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One  of  the  most  important  environmental  factors  to  promote  epigenetic  alterations  in an  individual  is
nutrition  and exposure  to  plant  compounds.  Phytoestrogens  and  other  phytochemicals  have  dramatic
effects  on  cellular  signaling  events,  so have  the  capacity  to  dramatically  alter  developmental  and  physi-
ological  events.  Epigenetics  provides  one  of  the  more  critical  molecular  mechanisms  for  environmental
factors  such  as  phytoestrogens/phytochemicals  to  influence  biology.  In the  event  these  epigenetic  mech-
eywords:
pigenetics
hytoestrogens
hytochemicals
ransgenerational
nvironmental exposures

anisms  become  heritable  through  epigenetic  transgenerational  mechanisms  the  impacts  on the  health  of
future  generations  and  areas  such  as evolutionary  biology  need  to be  considered.  The current  review
focuses  on  available  information  on  the  environmental  epigenetics  of phytoestrogen/phytochemical
exposures,  with  impacts  on health,  disease  and  evolutionary  biology  considered.

This  article  is  part of a  Special  Issue  entitled  ‘Phytoestrogens’.
© 2013 Published by Elsevier Ltd.
eview

ontents

1. Introduction  . .  . . . .  . .  .  . . .  .  . . .  .  . . .  .  . .  .  . . .  .  . . . .  . .  .  . . . .  . . . .  . . . .  . . . . . . . . . .  . .  .  .  . .  .  . . .  . . .  . . . . . .  . . . . . . .  . . . . . . .  .  . . . . . . .  .  . . .  .  . . .  .  . . . . .  . . .  . .  . . . . . . . . . .  . .  .  . . .  . .  .  .  . 00
2. Physiological  impacts  . .  .  . .  .  . . .  .  . . .  .  . .  . . . .  .  . . . . . .  .  . . .  .  .  . . .  . . . . . . .  . .  .  . . . .  . . . . . . .  .  . . . . . . . .  .  . . .  .  . . .  . . . .  . . .  . . .  .  . . .  . . . .  .  . . . .  . . .  .  .  . . .  .  . . . . . .  . . . .  .  .  .  . . .  . .  .  .  .  . 00
3. Environmental  epigenetics  .  . . .  .  . . .  .  . .  .  . . .  .  . . . . . .  . . . .  .  . . .  .  . . . . . . .  . . .  . . . .  .  . . . .  . .  .  . . . . .  .  . . .  . . . . .  . . . . . . .  . . .  . . . . .  . .  .  . . . . . .  . . . . .  . .  .  . .  .  .  .  .  . . . . .  .  . . .  . . .  . .  .  . . 00
4. Conclusions  . . .  . . . .  . . .  . . .  .  . . .  .  . . .  .  . . .  .  . . .  . . .  .  . . . .  . . . .  . . .  .  . . . . . .  . . . . .  . . .  .  . . .  . . .  . . . . . .  .  . . .  . . . . . .  .  . . .  . . . .  . . .  . .  .  . . . .  . . .  . . .  .  . . . .  .  .  .  . .  .  .  . . . . . .  . . . .  . . . .  .  .  . . .  . 00

References . . .  . . .  .  .  . . .  .  . . . .  . . . .  . . .  . . .  .  . . .  .  . . .  . . .  .  .  . .  .  . .  .  .  . . .  . . .  . . . .  .  . .  .  . . .  . . .  .  . . .  .  . . .  .  .  . . . . . .  . . .  . . . . .  . . . . . . .  .  . . . . . .  . . .  . . . . . . .  .  . . .  .  . . . . .  . .  . .  . .  .  .  .  .  .  . .  . . 00

. Introduction

Endocrine disruptors are present in the environment from both
ynthetic and natural origins and have been shown to influence
he physiology and development of organisms. These compounds
nterfere with the actions of endogenous hormones at several phys-
ological levels [1]. Although progressive accumulation of synthetic
ndocrine disruptors in the environment has altered the ecological
alances in natural populations and affected human health [2],
utritionally derived natural compounds provide a much more his-
orical and quantitative exposure. Synthetic endocrine disrupting
ompounds are present in cosmetics, food containers, packaging
aterials, toys, agrochemicals and in nearly all manufactured prod-

cts for humans [2–4]. However, alterations in nutritional habits
nd food composition provide one of the most common exposures
or endocrine disrupting chemicals [2]. For example, the recent

nutritional change in the incorporation of soy-derived prod-
ucts into human diets has dramatically increased the consumption
of plant derived chemicals [5].

Plant produced compounds (secondary metabolites) with estro-
genic actions in animals are known as phytoestrogens [6,7].
Phytoestrogens are readily available in the environment in food
items consumed by animals [7,8]. These compounds are poly-
phenolic structures similar to the estradiol molecule and have
the ability to trigger estrogenic activity through estrogen recep-
tor signaling pathways [9]. Phytoestrogens have been shown to
produce physiological and developmental effects in animals [10].
Phytoestrogens are classified as flavonoids, cumestans, lignans and
stilbens, with flavonoids (or isoflavones) being the most prevalent
in dietary sources [5,9,11] (Table 1). However, plant derived chemi-
cals (phytochemicals) that do not contain estrogenic activity are not
phytoestrogens and should be termed phytochemicals. The prob-
lem with categorizing classes of compounds as phytoestrogens is
Please cite this article in press as: C.M. Guerrero-Bosagna, M.K. Skinner, Env
J.  Steroid Biochem. Mol. Biol. (2013), http://dx.doi.org/10.1016/j.jsbmb.201
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that many do not contain estrogenic activity and should be clas-
sified as phytochemicals [12]. Therefore, the nomenclature in the
field is currently problematic and needs to specifically assess estro-
genic or endocrine disruptor activity of individual compound prior

dx.doi.org/10.1016/j.jsbmb.2012.12.011
dx.doi.org/10.1016/j.jsbmb.2012.12.011
http://www.sciencedirect.com/science/journal/09600760
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Fig. 1. Cross-studies comparison of circulating levels of genistein among different
human  groups. Gray bars indicate genistein serum concentrations in nM.  White
bars indicate genistein plasma concentrations in nM.  Black bars indicate values
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xtrapolated  to nM concentrations of genistein from relations of isoflavone plasma
oncentrations in ug/L between differentially fed infants. Values were obtained from
eviews in the literature [5,24].

o classification as phytoestrogens. The current review attempts to
se the term phytoestrogen and phytochemicals appropriately.

The  identification of phytoestrogens as having estrogenic or
eproductive effects in animals dates back to observations from
armers in New Zealand regarding ewes becoming infertile after
ating clover [13,14]. The same effect was further reported in cat-
le [15]. The fertility of captive cheetahs has also been shown to
e affected by dietary consumption of soy [16]. Since then, repro-
uctive effects of exposure to flavonoids have been reported in

aboratory animals ranging from disruption of estrous cycle, sexual
ehavior, testis function, ovarian function and female reproduc-
ive tract function to early developmental effects [17]. In particular,
ietary exposure of flavonoids have been shown by several stud-

es to produce significant reproductive effects in rodents [18–26].
nterestingly, dietary intake of phytoestrogens by laboratory ani-

als has also been shown to be high, with studies showing
strogenic effects derived from the consumption of some commer-
ial mouse diets [27–30].

A  number of epidemiological and laboratory studies have been
erformed with phytochemicals in the past 40 years due to their
otential to affect human health through nutrition [31]. One of the
ain concerns is that soy products have become an important com-

onent of food products in adult and infant human diets in recent
ears [32]. Variable amounts of isoflavones are consumed by human
opulations in different regions of the world [24,33]. For exam-
le, isoflavone consumption in Asian countries (25–100 mg/day)

s much higher than in western countries, such as the UK, with
aily consumption below 1 mg  [34]. Consequently, plasma levels
f the phytoestrogens vary among western and eastern countries.
or example, plasma levels of the phytoestrogens genistein and
aidzein are more than 10-fold higher in Japanese men  than in
ritish men  [35,36], Fig. 1. Serum levels can reach concentrations of

soflavones after a soy rich meal with estrogenic activity well above
he levels of endogenously circulating hormones [37]. In regards to
he potency, physiologically relevant concentrations of some phy-
oestrogens such as genistein, daidzein or cumestrol are able to
Please cite this article in press as: C.M. Guerrero-Bosagna, M.K. Skinner, Env
J.  Steroid Biochem. Mol. Biol. (2013), http://dx.doi.org/10.1016/j.jsbmb.201

timulate the transcriptional activity of both estrogens receptors
in a cell based transcription assay) to the same or greater levels
s synthetic compound such as diethylstilbestrol (DES), bisphenol

 (BPA), dichlorodiphenyltrichloroethane (DDT), methoxychlor, or
 PRESS
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tamoxifen [38]. The modes of action of phytoestrogens include
several other pathways in addition to binding to estrogen recep-
tors. These are rapid cellular responses (AMP-activated protein
kinase, mitogen-activated protein kinase and phosphoinositide 3-
kinase pathways), antioxidant action, tyrosine kinase inhibition,
peroxisome proliferator-activated receptor gamma (PPAR) medi-
ated action [5] and binding to the non-classical estrogen receptor
GPR30 or the aryl hydrocarbon receptor [17]. In addition, the role of
phytoestrogens as selective estrogen receptor modulators (SERMs)
such as tamoxifen should not be dismissed, given the ability of phy-
toestrogens to bind to the ER and produce tissue-specific actions
that depends on the presence of cofactors that helps modulate the
interaction [39]. For example, nude mice with a low-dose genis-
tein exposure can negate the effect of tamoxifen of reducing MCF-7
breast tumor cells growth [40]. An important aspect of exposure to
phytochemicals is potential combination effects with other hor-
monally active compounds [41,42].

2. Physiological impacts

Human  studies show that isoflavone consumption has a variety
of physiological effects. Intake of isoflavones has been suggested
to alter sex hormone concentrations in adults [43,44] and children
[45]. For example, soy isoflavone consumption by premenopausal
women is associated with increased circulating luteinizing hor-
mone (LH) and follicle stimulating hormone (FSH), and increased
menstrual cycle length [46]. In postmenopausal women, changes
in sex hormone-binding globulin levels have been observed [47].
A recent study found an association of high content of isoflavones
in the blood with precocious puberty in Korean girls [48]. Other
studies in women correlate consumption of phytoestrogens with
increased sexual arousal [49], increased risk for uterine fibroids
[50], and abnormal uterine bleeding [51]. Recently, a panel of
experts has reviewed the literature on the use of soy in infant
formulas due to the concern raised by several studies regarding
adverse effects later in life [32]. In men, one study suggests
that increased hypospadias could be related to a high devel-
opmental exposure to phytochemicals/phytoestrogens from a
vegetarian maternal diet during gestation [52]. High intake of
dietary isoflavones has been correlated with low sperm numbers
in men  from subfertile couples [53]. In addition to reproductive
effects, consumption of flavonoids is thought to have a protec-
tive effect against cancer in specific organs [54], including breast
cancer in humans [55]. However, recent studies suggest that this
protective effect of flavonoids against cancer would only occur if
the exposure is during childhood/adolescence [56,57].

One  of the main concerns about high phytoestro-
gen/phytochemical diet consumption in humans is the effects
on early developmental stages, such as the effects on infants
consuming soy-based formulas. The effects of high consumption of
isoflavones by pregnant mothers in uterus, placenta or breast milk
are also a concern in terms of their influences on the developing
embryo. Circulating plasma concentrations of isoflavones is consid-
erably high in infants consuming soy-formula, being 50–100 times
higher than levels in pregnant women, 10–50 times higher than
in Asian women, 100–700 times higher than in non-vegetarian
US women [5,24] (Fig. 1). The equivalent estrogenic activity in
these infants is 13,000–22,000 higher than normal endogenous
estrogen levels [5]. Maternal exposures are also crucial during
embryogenesis, when the fetal microenvironment is susceptible to
maternal influences due to dietary compounds [58] or hormonal
ironmental epigenetics and phytoestrogen/phytochemical exposures,
2.12.011

changes [59]. One important maternal exposure route is through
the placenta. It has been shown that genistein aglycone can cross
the placental barrier and reach the fetal brain in rats [60,61].
Effects in the early embryo are also mediated by physiological

dx.doi.org/10.1016/j.jsbmb.2012.12.011


ARTICLE IN PRESSG Model

SBMB-3916; No. of Pages 7

C.M. Guerrero-Bosagna, M.K. Skinner / Journal of Steroid Biochemistry & Molecular Biology xxx (2013) xxx– xxx 3

Table  1
Common phytochemicals and their classification.

Common phytoestrogens Chemical classification Nutritional source

Genistein Flavonoid Grains, fruits, vegetables [7,8]
Daidzein  Flavonoid Grains, fruits, vegetables [7,8]
Quercetin Flavonoid Grains,  fruits, vegetables [107]
Resveratrol  Stilben Grapes, itadori tea, peanut roots [11]
Cumestrol Coumestrol  Grains and vegetables [108]
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Lignans  Lignans 

lterations that dietary isoflavones can promote in the uterus. For
xample, in both mice and rats it is well reported that dietary
enistein increases uterine wet weight [20,21,25,30,62] and alters
terine gene expression [20,21,30,62,63]. In addition, it has also
een reported that the uteri of genistein treated females are not
apable of supporting normal implantation [64]. Another route of
aternal exposure is lactation. Isoflavones have been detected in

reast milk from mothers consuming a soy-based beverage and
n the urine of infants breast feeding this milk [65]. Therefore,

aternal high soy-based diet could be an important route of early
ostnatal exposure to phytoestrogens (Fig. 1). However, studies

n rats show that lactational transfer of genistein to rat pups is
imited [60,66].

Combined observations suggest perinatal exposure to phyto-
strogens appears crucial in impacting developing embryos and
nfluencing adult phenotypes. Embryos developmentally exposed
o phytoestrogens present reproductive abnormalities in adults
uch as aberrant estrous cycles, early reproductive senescence,
ammary adenomas and adenocarcinomas [60], altered uterine

ene expression [22] and altered response to estrogen in tissues
uch as uterus [21,25], tibia and liver [25]. Studies in mice and
Please cite this article in press as: C.M. Guerrero-Bosagna, M.K. Skinner, Env
J.  Steroid Biochem. Mol. Biol. (2013), http://dx.doi.org/10.1016/j.jsbmb.201

ats have also shown that a perinatal high dietary exposure to
soflavones advances sexual maturation in females [19,23,67] and
as differential effects in body weights between males and females
19,23]. Due to the long lasting effects of developmental exposures

ig. 2. Transgenerational transmission of information through the male germline for the 

ffects and the transgeneration F3 generation affects in the absence of direct exposure.
Seeds, cereals, grains, vegetables and fruits [109]

to  isoflavones on abnormal phenotypes and gene expression, epi-
genetic mechanisms need to be considered.

3. Environmental epigenetics

The relationship between the action of endocrine disruptors
and epigenetic modifications is becoming well established [68].
Examples of epigenetic alterations that occur after exposure to
synthetic endocrine disrupting compounds include effects of expo-
sure to bisphenol A [69,70], diethylstilbestrol [71], butyl paraben
[72], airborne polycyclic aromatic hydrocarbons [73] and vinclo-
zolin [74]. Epigenetics is defined as molecular factors and processes
around the DNA that regulate genome activity independent of DNA
sequence, and are mitotically stable [75]. Such molecular factors
and processes include histone modifications, chromatin struc-
ture, DNA methylation or hydroxymethylation and non-coding
RNAs. Research has expanded regarding the role of environment
in producing epigenetic modifications that has developed a bet-
ter understanding of epigenetic mechanisms [76]. For example, the
intricate relation between histone modifications and other mech-
anisms of epigenetic modification, such as DNA methylation, are
ironmental epigenetics and phytoestrogen/phytochemical exposures,
2.12.011

now known to be fundamental to the establishment of epige-
netic patterns [76,77]. Important molecular interactions involved in
chromatin replication are now understood [78]. Crucial factors that
participate in the process of DNA methylation programming are

directly exposed F0 generation female, F1 generation fetus, F2 generation germline

dx.doi.org/10.1016/j.jsbmb.2012.12.011
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Table 2
Phytoestrogen induced epigenetic modifications.

Increased DNA methylation in H-ras
proto-oncogene in pancreas after
treatment with coumestrol or equol

Lyn-Cook et al. [80]

Alterations in DNA methylation in prostate
after exposure to genistein, detected by
mouse differential methylation
hybridization

Day  et al. [81]

Maternal dietary genistein
supplementation of mice during
gestation shifted the coat color of
heterozygous viable yellow agouti
(Avy/a) offspring toward pseudoagouti,
which was associated with increased
DNA methylation in an IAP particle
upstream of the Agouti gene

Dolinoy et al. [110]

Maternal  genistein consumption prevents
in the offspring’s kidney DNA
hypomethylation of an IAP particle of the
gene Cabp induced by bisphenol-A

Dolinoy et al. [91]

Genistein induced the expression of tumor
suppressor genes p21 (WAF1/CIP1/KIP1)
and  p16 (INK4a) and DNA
hypomethylation  of the p21 promoter in
an androgen-sensitive (LNCaP) and an
androgen-insensitive (DuPro) human
prostate cancer cell line. Genistein
increased acetylated histones 3, 4, and
H3/K4 at the p21 and p16 transcription
start sites

Majid  et al. [83]

Genistein activated tumor suppressor
genes by modulating histone H3–Lysine
9 (H3–K9) methylation and
deacetylation at their promoters in
prostate cancer cells

Kikuno et al. 2008 [82]

Perinatal  consumption of a diet rich in
genistein and daidzein produces gene
specific changes in DNA methylation in
Acta1 in liver.

Guerrero-Bosagna et al. [19]

Neonatal  exposure of female mice to high
levels of genistein results in
tissue-specific DNA hypermethylation of
the gene Nsbp1 in the uterus

Tang et al. [71]

Genistein upregulates Btg3 expression
through DNA hypomethylation of that
gene in human renal carcinoma cell lines

Majid et al. [84]

Genistein promotes DNA hypomethylation
of E2F-1 sites in hTERT in breast benign
derived cell and breast cancer cells

Li et al. [85]

Genistein upregulates Btg3 expression
through its DNA hypomethylation of that
gene in prostate cancer tissue and cell
lines

Majid et al. [111]

Genistein or daidzein induced DNA
demethylation in promoter regions of
the genes BRCA1, GSTP1, EPHB2 and
RASSF1A in human prostate cancer cell
lines

Vardi et al. [86]

Prenatal exposure to dietary genistein
promotes changes in DNA methylation in
the repeat elements class SINEB1 and
SINEB2 in bone marrow

Vanhees et al. [89]

Genistein perturbed DNA methylation
patterns of differentiated ES cells after
de novo methylation

Sato  et al. [87]

Genistein promoted DNA demethylation of Matsukura et al. [88]
ARTICLEBMB-3916; No. of Pages 7
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ow known that have lead to a better understanding the develop-
ental mechanisms of DNA methylation and demethylation [77].

mportantly, a number of studies have reported that interference of
he process of germ line programming of DNA methylation patterns
an lead to altered DNA methylation states in future generations
75,79].

Evidence for the epigenetic actions of natural endocrine disrupt-
rs and phytochemicals such as flavonoids has also been described
n recent years. The first study to show an epigenetic effect of
avonoids was performed with administration of the phytoestro-
ens coumestrol and equol to newborn mice which increased DNA
ethylation at the proto-oncogene H-ras, resulting in its inacti-

ation [80]. DNA methylation patterns have been shown to be
ltered in 8-week-old mice after consumption of high doses of
he phytoestrogen genistein [81]. Genistein can have a protec-
ive effect in prostate cancer via histone demethylation and/or
cetylation and chromatin remodeling of tumor suppressor genes,
esulting in their activation [82,83]. Treatment of human renal
arcinoma cell lines with genistein up-regulate the tumor suppres-
or gene BTG3 through decreasing promoter methylation [84]. A
horough analysis of genistein repression of human breast can-
er and pre-cancerous cultured cells has been published [85]. The
tudy showed genistein promotes hypomethylation of the E2F-1
ites in the hTERT (human telomerase reverse transcriptase) pro-
oter which leads to increasing binding of E2F-1 and inhibition of

TERT transcription. Genistein also reduced expression of Dnmt1,
nmt3a and Dnmat3b in these breast cancer cells and changed
ethylation in H3K9 and H3K4 histones at the hTERT promoter [85].

ecently, genistein and daidzein have been shown to induce DNA
emethylation in the promoter regions of BRCA1, GSTP1, EPHB2
nd RASSF1A in human prostate cancer cell lines [86]. Genistein
as also been shown to interfere with DNA methylation in differ-
ntiated ES cells after the process of de novo methylation [87]. In
ndometrial stromal cells genistein has been shown to promote
NA demethylation of the steroidogenic factor 1 (SF-1) promoter

88]. Changes in methylation in two classes of repeat elements
SINEB1 and SINEB2) have also been reported in bone marrow
fter a prenatal exposure to dietary genistein, with a corresponding
ffect on the pattern of red blood production [89]. A summary of
he effects of these phytoestrogens on epigenetic marks is shown
n Table 2.

In  addition to these direct exposure epigenetic effects, it has
een hypothesized that phytoestrogens could affect the estab-

ishment of methylation patterns in the offspring due to a
ultigenerational direct maternal exposure [10,90]. Evidence for

his was reported by different laboratories. In the agouti mouse
odel, maternal dietary supplementation with either methyl-

onors or genistein [91] showed to inhibit a bisphenol A-induced
ypomethylation of interstitial A particle (IAP) repeat elements
pstream of the Avy allele. Methylation changes in that region cor-
elate with coat color changes. Gender specific changes in Acta1
ene methylation have been shown as a response to a diet rich
n the phytoestrogens genistein and daidzein in mice [19]. Neona-
al exposure of female mice to high levels of genistein results in
issue-specific hypermethylation of the gene Nsbp1 in the uterus
71].

The fact that exposure to flavonoids is capable of altering epi-
enetic states in the F1 generation leads to the speculation that it
ould also induce epigenetic changes in further generations. Trans-
enerational transmission of environmentally induced epigenetic
odifications and phenotypes is a recently identified phenom-

na [92] that has been replicated in a number of laboratories
Please cite this article in press as: C.M. Guerrero-Bosagna, M.K. Skinner, Env
J.  Steroid Biochem. Mol. Biol. (2013), http://dx.doi.org/10.1016/j.jsbmb.201

ith diverse environmental compounds. Previous research has
hown that a developmental exposure to vinclozolin can affect
evelopmental processes in the embryonic testis, which can pro-
uce an increase in spermatogenic cell apoptosis in the adult [93].
the steroidogenic factor 1 (SF-1)
promoter in endometrial stromal cells

This vinclozolin-induced spermatogenic alteration was  transgen-
erationally transmitted from the F1 generation, which was devel-
opmentally exposed, to the F2, F3 and F4 generations [92,94,95]. In
ironmental epigenetics and phytoestrogen/phytochemical exposures,
2.12.011

the event a gestating female is exposed, the F0 generation female
and F1 generation fetus are directly exposed, the germline that
will generate the F2 generation is also directly exposed, and it is
not until the F3 generation that a transgenerational affect in the

dx.doi.org/10.1016/j.jsbmb.2012.12.011


 ING Model

S

oid Bi

a
a
e
I
e
o
m
s
v
y
t
a
t
c
t
g
t
e
o
n
g
c
m
b
d
s
i
a
g
t
i

a
b
i
t
q
h
p
e
t
I
a
t
t
t
t
a

4

h
u
r
d
c
t
p
t
o
m
e
n
i

ARTICLEBMB-3916; No. of Pages 7

C.M. Guerrero-Bosagna, M.K. Skinner / Journal of Ster

bsence of direct exposure can be deduced, Fig. 2. More extensive
nalyses determined that vinclozolin-induced epigenetic transgen-
rational alterations are produced in F3 generation sperm DNA [96].
ndependent research groups have now shown the phenomena of
nvironmentally induced epigenetic transgenerational inheritance
f adult onset diseases. For example, BPA has been shown to pro-
ote transgenerational testis abnormalities [97], dioxin has been

hown to promote transgenerational uterus abnormalities [98], and
inclozolin has been shown to promote imprinted gene DNA meth-
lation changes [74]. A recent study has shown that environmental
oxicants such jet fuel, dioxin, a mixture of BPA and phthalates, and

 mixture of pesticides have the ability to promote the epigenetic
ransgenerational inheritance of diseases [99]. Some pharmaceuti-
al agents such as thyroxine and morphine have also been shown
o promote behavioral abnormalities observed from the F1 to F3
enerations [100]. Chemotherapy has also been shown to produce
ransgenerational effects, including despair-like behaviors, deliv-
ry complications, reduced primordial follicle pool and early loss
f reproductive capacity [101]. In addition to synthetic chemicals,
utritional factors have also been shown to induce epigenetic trans-
enerational inheritance of disease states [102,103]. For example,
aloric restriction has been shown to promote transgenerational
etabolic disease phenotypes [103], and high fat diets have

een reported to promote transgenerational adult onset metabolic
isease and obesity [104,105]. Currently, no transgenerational
tudies have been reported with phytoestrogens or phytochem-
cals. Given the relevance of phytoestrogen exposure in humans
nd its known epigenetic actions the potential that phytoestro-
en/phytochemical compounds promote epigenetic transgenera-
ional inheritance of disease and phenotypic variation needs to be
nvestigated.

In addition to the impacts of phytochemical exposures on health
nd disease, these compounds may  have significant impact on the
iology of most species. With the identification of environmentally

nduced epigenetic transgenerational inheritance phenomena [75],
he ability of an environmental exposure to influence all subse-
uent generations after an individual or population exposure may
ave significant impacts on evolutionary biology [106]. For exam-
le, an exposure to an environmental compound promoted the
pigenetic transgenerational inheritance of sexual selection pheno-
ypes that would subsequently impact evolutionary changes [106].
n the event a populations phytochemical exposure [90] was  altered
nd induced epigenetic transgenerational inheritance of pheno-
ypic variation, subsequent natural selection events may  occur in
he population to promote an evolutionary change. Therefore, due
o the potential transgenerational nature of the actions of the phy-
oestrogens/phytochemicals the impacts on evolutionary biology
lso need to be considered.

.  Conclusions

Phytochemicals are one of the largest classes of compounds
umans are exposed to throughout life. Phytoestrogens are nat-
rally available endocrine disruptors in the environment. More
ecently, humans have an increased exposure to these compounds
ue to nutritional changes in the variety of food items that are
onsumed. Given the diverse mechanism of action, the potency of
hese compounds, the impact of phytochemicals on disease, and the
otential for combinatorial effects with other common synthetic
oxicants, it will be fundamental in the future to increase the focus
n epigenetic effects of phytoestrogens/phytochemicals. Perhaps
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ost important will be to investigate potential transgenerational
ffects of exposure to phytoestrogens/phytochemicals. Given the
atural occurrence of these compounds for animal consumption,

t is critical to consider physiological effects in populations of wild
 PRESS
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animals,  as well as the ecological and evolutionary consequences
of epigenetic changes triggered by phytochemicals.
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