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Alfier Fred Hoyle wrote Mathematics of Evol
1987, only a hundred facsimile copies of this
handwritten manuscript were produced. Few who
would be interested in its contents ever saw or
heard about the manuscript. I happened to lea
it from Hoyle’s longtime collaborator, Chandra
Wickramasinghe, who gave me a copy when |
visited him in Cardiff, Wales, in 1995. I was deeply
impressed with the penetrating analysis it contained
and moved by the story behind its dedication to

George Carson.
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The following year I met Sir Fred Hoyle at the Institute for Astronomy
in Cambridge, England, which Hoyle had founded in 1967 and headed for
six years. There, in the former residence of Sir Arthur Eddington, he spoke
with me at length about his work in biology. I came away with even greater
admiration for his integrity and his contributions to science and with
genuine affection for him. It seemed a tragedy that his Mathematics of
Evolution had not been typeset and widely distributed. Concerned that this
work might be lost to a larger audience, I asked him if I could publish it, and
he agreed. In 1997, he wrote a new preface and oversaw the minor revisions
required.

Other scientists, such as J. B. S. Haldane, R. A. Fisher, Sewall Wright
and Motoo Kimura, have worked extensively on this subject, and Hoyle is
equal to any of them in mathematical skill. Being iconoclastic, he is not
discouraged when his analysis leads to a result different from that reached by
his predecessors. And Professor Hoyle tells a story well. Even the complex
mathematics in some chapters are narrated with straightforward, simple and
engaging text. This is a book that many readers —not just those who are
mathematically sophisticated—can easily benefit from and enjoy. But there
is even more here of value for geneticists, mathematicians, and scientists in
any field who are interested in evolution. In fact, the greatest purpose this
book could serve would be to rekindle within mainstream science broad, fair
and serious consideration of the issues it raises.

This is the first book I have published and it took more time and effort
than [ expected. But here it is. Finally. [ am grateful to Meg Johnson, who
mastered Hoyle’s handwriting and keyed the text and equations into the
computer accurately, and in record time. I am extremely grateful to Diane
Nesin, who also mastered Dr. Hoyle’s handwriting, edited the typescript,
communicated with Sir Fred, transcribed his revisions, resolved vexing
software conflicts, helped me find other resources, and encouraged me to
stick with it. [ am grateful to Robbin Brent, who made the design and
production of the book a smooth and enjoyable process. I always appreciate

the superb and steady assistance of my administrator, Barbara Mason,
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without whom I would be incapacitated. And my deepest thanks to my wife,
Ellen, who provided loving and essential support, instead of recommending
psychological counseling, after I left a perfectly good job to pursue science
full time.

Finally, I am grateful to Sir Fred Hoyle for doing science so tirelessly and

courageously.

—Brig Klyce
25 May 1999



Preface

There is a fair flow of anti-Darwinian books
the market. Although some contain valid
arguments against the theory, the motives of their

authors seem to me to be rarely scientific. The

motive is rather to cast doubt on the concept of
evolution, in order to encourage a return to
religious fundamentalism, causing biologists to
toss such books on sight into the wastepaper

basket. Causing them perhaps to wonder if it



MLnedaos o« EYolLon

might not be the same with this book. Well, it isn’t. Admittedly, I was
brought up in the British state school system circa 1925, which was certainly
religiously oriented to an extent Americans will hardly credit. In fact, 1
scored well in religious examinations on account of an early faculty for being
able to commit long passages from the Bible to memory. Add to this that I
was one of the members of our local church choir.

Our church wasn’t sufficiently grand to have its own vicar. But the
diocese assigned us a curate who would on most Sundays climb the hill from
the nearest town to our village. For variety’s sake if not for his own, he would
get other curates to stand in for him every two or three weeks, and sometimes
a lay preacher. We boys liked the lay preachers, because once they got fairly
started, they would mostly foam along with little regard for vocabulary or syn-
tax. One day, a small thickset man in boots clumped up the wooden steps to
the pulpit. After a minute or so taken in settling himself, he suddenly roared
out to our innocent-looking congregation: “The number of the beast: for it is
the number of a man: and his number is six hundred three score and six.”

It didn’t take long for me to work out that six hundred three score and
six was 666, numbers being something with which I regarded myself as being
fairly expert. Did this mean the number of men in the world was claimed to
be 6667 Or did it mean what it said literally—that 666 was a number
attached to a particular man in the fashion of a convict? Either way I felt
little doubt that this particular preacher was seriously daft in the head. When
[ asked our teacher of religion at school about it, I was told that the text was
from the Book of Revelations, which perhaps shouldn’t be taken too
seriously. Maybe not, but for me it was a wave of a incoming tide licking away
at a sand castle.

The sand castle was entirely washed away all in a moment about two
years later. This time there would be no doubt about the source or the topic.
The sources were the sacred gospels of Matthew, Mark, Luke, and John; and
the topic was central to Christian faith, the Resurrection. I had the thought
one day to look up and compare what the four gospels had to say about events
of at the tomb of Christ, explicitly with reference to these questions: Who
among Christ’s friends, relatives, and disciples first came to the tomb? What
was the physical condition of the tomb? and How many angels were present
there? To this point I had been willing to accept such supernatural agents as
angels. Indeed, angels seemed to me so remarkable that it mattered quite a
lot whether there was one of them, two of them, or three of them in
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attendance. What I found was that no two among Matthew, Mark, Luke, and
John agreed in respect of this simple question of angel numeration, which
even the most slow-witted person in my native village would have been able
to report correctly.

Like a boat pushed off into a fast-moving river, 1 was swept away from my
former cherished beliefs. Out of my local church in a week. Out of my belief
in the Christian religion in not much time.out of any belief in any
fundamental religion in little more time than that. Since then, the boat has
continued on its journey, away from any belief in anything which men have
written down on paper a long time ago.

The criticism of the Darwinian theory given in this book arises
straightforwardly from my belief that the theory is wrong, and that continued
adherence to it is an impediment to discovering the correct evolutionary
theory. To the extent that one is deflected by socioreligious considerations
from correcting what is wrong, one hands a victory to opponents.

To deny the paleontological evidence of evolution, and in particular
man’s place in it, is on par with denying that water flows downhill. In the
Darwinian theory, while water flows downhill all right, it flows in rivers that
are claimed to be uniformly graded, a graded river being one that goes
downhill at a steady angle from its source to the sea. Because rivers in
practice flow over rocks of uneven hardness, they sometimes hurry downhill
and they sometimes dawdle.

The River Wharfe in its flow over limestone rocks above the village of
Burkden goes in a series of small falls over ledges a foot or two in height,
intervals of little change spaced by small jumps. The name “punctuated
equilibrium” has been given to evolution proceeding analogously to this. But
water can also go downhill far more spectacularly, as with the Niagara River
between Lake Erie and Lake Ontario. It is to biological events on such a scale
that in later sections of this book I have given the name “genetic storm.”

The biggest physical storm occurring in ten years usually produces as
much change as all the rest put together. And the biggest in a hundred years

as much or more than all the rest. And, perhaps, even the biggest in a
thousand years. ... Something of the same sort seems to happen with
evolution. The fine-tuning of genes produces small changes. The addition of
entirely new genes, perhaps whole batteries of new genes, produces large
changes, grafted onto the genetic complement of an already-existing
organism.

-
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A decade ago I thought new genes were acquired by an organism from
the external environment, just as bacterium acquires a new gene by picking
up a plasmid, except that, unlike the bacterial case, its external environment
was taken to be external to the Earth. At acquisition, a new gene was
supposed to go first into the store of redundant DNA, a process continuing
until a considerable number had been added, when, in a genetic storm, cell
programs become shuffled by a viral form of interference from outside. Most
such shufflings would come to a bad end. Buy occasionally a situation both
new and workable in a new niche in the terrestrial environment was
considered to arise, setting evolution off on a new path.

Today, however, I would modify this picture somewhat to the view that
all genes in present-day organisms were here already in the metazoans that
invade the Earth 570 million years ago at the beginning of the Cambrian Fra,
making the subsequent story of terrestrial evolution into one in which genes
have been called into operation as ecologic conditions permitted them to be
so. For example, it would have been pointless call in a genetic system leading
to the appearance of flowering plants before the means of successful
pollination existed. The intricate interweaving of many organisms had to
proceed in concert with each in a pattern that has grown every more
complex with the passage of time. The first metazoans were relatively simple
forms that could exist by themselves on an undeveloped Earth, but they
already possessed the genes necessary for their subsequent development.

This is a more efficient way of seeding a planet with life than a
genetically random process of acquiring genes would be. If life exists in the
universe on a very grand scale, we would be likely to have received it on the
run only after a great deal of evolution had already taken place. In which
case, the most efficient procedures would have become established already by
570 million years ago.

Genes that are initially unexpressed accumulate errors by neutral drift at
a rate of ~10°S errors per gene per generation. After a geological interval of
~108 years, which implies 108 generations, there would thus be ~100 errors
among ~1000 base pairs for each gene that was being held in storage against
future evolution, resulting in a serious loss of efficiency by the time such store
genes come to be activated. But providing mating of population number N
of the first organisms were large enough, efficiency would quickly be
recovered. By the arguments of Chapter 4, the probability of ever becoming
fixed by random drift would be 1/2N. Hence so long as N is large compared
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with the number of generations over which drift occurs, no irrevocable
damage occurs.Whereas about a tenth of the population would have a
particular base pair wrong on the DNA of a gene unprotected by natural
selection, ~100 million years, nine-tenths of the population would still have
it right. Then, once the gene is activated, replication in sexual cycles with
crossover removes the errors quickly by natural selection, in a length of time
that is geologically negligible.

It is a deduction that the first organisms 570 million years ago would
have needed genetic protection by crossover, as described in Chapter Z; and
reproduction by pathogenesis would probably also be necessary in order to
ensure that N becomes large enough for the two sexes to find each other
successfully. Judging as best one can from living fossils dated beyond 500
million years ago, these requirements seem to be well met.

—Fred Hoyle

Bournemouth



This essay has been a long time in the ma
My earliest research work was in truancy from -
school, in which I was successful enough to

whittle down the time I spent mewed up in

classrooms to something like forty percent of
what it was supposed to be between the ages of
five and nine. It was an essential part of my
system that neither the school nor my parents

should know where I was during the daytime.
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Isimply disappeared, like H. G. Wells’s Invisible Man, except that being only
a small boy, it was easier for me. [ disappeared into the woods and fields, with
plenty of time to watch birds building their nests, to watch the rain falling
and the streams rising. So it came about that I knew the names of every
flower and tree and the whereabouts of every animal in my home district.
All that homespun knowledge was wiped clean from my brain by the age
of eighteen, because by then I had become convinced that biology was a
doubtful subject. The trouble was that in reading widely during my early
teens I ran into the Darwinian theory, for a little while with illusions and

then with less respect than adults with bated breath were wont to show. The
theory seemed to me to run like this:

If among the varieties of a species there is one that survives better
in the environment than the others, then the variety that survives
best is the one that best survives.

If I had known the word tautology I would have called this a tautology.
People with still more bated breath, called it natural selection. [ made them
angry, just as I do today, by saying that it did nothing at all. You could select
potatoes as much as you pleased but you would never make them into a
rabbit. Nor by selecting oak trees could you make them into colonies of bats,
and those who thought they could in my opinion were bats in the belfry. This
made them angry too. Older folk in the know told me that selection didn’t
operate to make complicated things out of complicated things, only to make
complex things out of simple ones. I couldn’t understand how anything of
the sort could be true, because, unlikely as it was, it would surely be less
difficult to make a rabbit out of a potato than to make a rabbit out of sludge,
which is what people said had happened, people with line after line of letters
after their names who should have known what they were talking about, but
obviously didn’t.

The Mathematical Tripos at Cambridge intervened to occupy my
thoughts, and it was not until I began research officially in 1936 that biology
reared its head again. This was because I became friendly with George Carson
who was then just completing his Ph.D. in botany. In 1938-39 I shared “digs”
with George, so biological topics naturally occupied a fair fraction of our
conversation. Carson was among a minority of biologists who have suspected
something to be amiss with the Darwinian theory. His position was similar to
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that of Alfred Russel Wallace in the latter’s later years. Something was right
about the theory(there were too many examples of niche matching between
special characteristics of species and the precise details of their environment
for the theory not to be correct in some degree(but not wholly correct. George
was pretty well unique in believing that what was missing could be discovered
by mathematics. He never ceased, both in our student days and in later life,
trying to inveigle me into a serious investigation of evolution, and when I did
1ot rise to the bait, George was forever borrowing my mathematics books. He
would sit with them of an evening with the conviction that somewhere he
would find the clue he was looking for. Neither of us spotted this clue, namely
that terrestrial biology is not a closed system.

It was—and still is—very hard to arrive at this concept from inside
biology. The trouble lay in an unremitting cultural struggle which had
developed from 1860 onward between biologists on the one hand and the
supporters of old beliefs on the other. The old believers said that rabbits had
bheen created by God using methods too wonderful for us to comprehend.
The new believers said that rabbits had been created from sludge, by methods
too complex for us to calculate and by methods likely enough involving
improbable happenings. Improbable happenings replaced miracles and sludge
replaced God, with believers both old and new seeking to cover up their
ignorance in clouds of words, but different words. It was over the words that
passions raged, passions which continue to rumble on in the modern world,
passions that one can read about with hilarious satisfaction in the columns of
the weekly science magazine Nature and listen to in basso profundo pro-
nouncements from learned scientific societies. Because the old believers said
that God came out of the sky, thereby connecting the Earth with events
outside it, the new believers were obliged to say the opposite and to do so, as
always, with intense conviction. Although the new believers had not a
particle of evidence to support their statements on the matter, they asserted
that the rabbit-producing sludge (called soup to make it sound more
palatable) was terrestrially located and that all chemical and biochemical
transmogrifications of the sludge were terrestrially inspired. Because there
was not a particle of evidence to support this view, new believers had to
swallow it as an article of faith, otherwise they could not pass their
examinations or secure a job or avoid the ridicule of their colleagues. So it
came about from 1860 onward that new believers became in a sense mentally
ill, or, more precisely, either you became mentally ill or you quitted the

=B
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subject of biology, as I had done in my early teens. The trouble for young
biologists was that, with everyone around them ill, it became impossible for
them to think they were well unless they were ill, which again is a situation
you can read all about in the columns of Nature.

[ eventually returned willy-nilly to biology in the following way. My
colleague Chandra Wickramasinghe and I had for a long time been trying
to explain the observed properties of interstellar grains. The sheer quantity
of the grains tells one that they must be made out of common atoms, so at
first sight it seems as if they could only be made from commonplace
materials. However, the more we compared the astronomical observations
with the properties of commonplace materials, the more we found that
nothing fitted as accurately as it should have done. The basic trouble was
that all solid ordinary materials have refractive indices that are much too
high, a difficulty that could only be got over if the interstellar particles were
hollow. But why the particles should be hollow remained a mystery until
some years ago we happened to notice that bacteria become hollow when
they dry out—and bacteria if they existed in interstellar space would
certainly be very dry. After so many failures we had by now arrived at a try-
anything attitude. Equipping ourselves with a size distribution for bacteria
taken from standard catalogues, we were able to make a comparison with
the astronomical data, finding essentially precise agreement, agreement far
superior to anything we had obtained from commonplace materials.

This success was for visual wavelengths. The next question was, What is
the situation at other wavelengths? To this end, we were led, together with
Dr. Shirwan Al-Mufti, to investigate the properties of microorganisms at
longer wavelengths in the infrared. From measurements made in the
laboratory by Al-Mufti, we found a remarkable constancy of the absorption
pattern at wavelengths near 3.4um, constancy from one microorganism to
another, and constancy also with respect to the physical conditions. Not long
after our measurements had been made, the absorption properties of
interstellar grains were actually determined observationally, with an
uncannily close correspondence found to those of microorganisms. Since this
second success was predictive, we were encouraged to follow up the concept
of life existing outside the Earth, with especial reference to simple organisms
and to the genetic components of life. The taboo which had hitherto existed
for such thinking, at any rate for us, was broken.
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We were thus led to considerations in a number of directions which have
been fully reported elsewhere, including the evolutionary considerations
touched on here in Chapter 6. As it became clear that the Darwinian theory
could not be broadly correct, a question still remained, however, for [ found
it difficult to accept that the theory could be wholly incorrect. When ideas
are based on observations, as the Darwinian theory certainly is, it is usual for
those ideas to be valid at least within the range of the observations. It is when
extrapolations are made outside the range of observations that troubles may
arise. So the issue that presented itself was to determine just how far the
theory was valid and exactly why beyond a certain point it became invalid.
The issue was a mathematical one, as George Carson had suspected so long
ago, and I thought at first that it might be settled the easy way, by reading in
the literature and in classic texts on mathematical genetics.

My experience proved unrewarding. After a session with “the books,” |
would retreat, baffled. The mathematics was never difficult in itself. It was
the words in which the mathematics was shrouded—one example con-
cerning so-called genetic cost is given in Chapter 7. At first | took the fault
to be mine, but as the frustrating sessions were repeated again and again over
a period of years, I came to suspect that the confusion was in the heads of the
writers themselves. Eventually therefore, I decided to tackle this mathe-
matics myself working de novo, and so coming at last to the problem George
Carson had tried to set me half a century ago. Although my results were all
arrived at independently, some—perhaps most—have been obtained before.
Their arrangement, however, is I believe original.

Of the books, I would like to recommend especially R. A. Fisher’s A
Genetical Theory of Natural Selection for its brilliant obscurity. After two or
three months of investigation it will be found possible to understand some of
Fisher's sentences. I am genuinely sorry for scientists of the younger
generation who never knew Fisher personally. So long as you avoided a
handful of subjects like inverse probability that would turn Fisher in the
briefest possible moment from extreme urbanity into a boiling cauldron of
wrath, you got by with little worse than a thick head from the port which he,
like the Cambridge mathematician J. E. Littlewood, loved to drink in the
evening. And on the credit side you gained a cherished memory of English
spoken in a Shakespearean style and delivered in the manner of a Spanish

grandee.
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And the outcome of this essay? Well as common sense would suggest, the
Darwinian theory is correct in the small but not in the large. Rabbits come
from other slightly different rabbits, not from either soup or potatoes. Where

they came from in the first place is a problem yet to be solved, like much else
of a cosmic scale.

“Natural Selech
and the Multlgene Prob

Commonly I find physicists who tell me t
natural selection seems to them but an obviou
application of simple feedback. Mathematicians
on the other hand tend to give a knee-jerk
shudder at the word obvious because they know
of so many cases where what at first sight seemed
“obviously” true turns out on careful
investigation to be untrue. Natural selection

turns out to be untrue in the general sense in
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which it is usually considered to apply, as I shall demonstrate in this chapter.
But in the more restrictive sense introduced in the next chapter the theory
does better; with what degree of success, I will consider in Chapter 6.

Let us start naively with the feedback equation

dx
SXx

dr (1.1)

in which x is considered to be the fraction of some large population that
possesses a particular property, A say, the remaining fraction 1 — x possessing
a different property a, all individuals being otherwise similar to each other.
The population reproduces itself from generation to generation with the old
dying to make way for the young. Change occurs so slowly that time can be
regarded as a continuous variable with the average interval between
generations taken as unit. Individuals with properties A and a in a particular
generation are considered to produce offspring in the ratio 1 +s: 1, offspring
that survive to become reproductive agents in the next generation, with s
taken as a constant independent of x and ¢.
Equation (1.1) integrates to give

x = x,exp(st) , (1.2)

where x = xy at t = 0 is a given boundary condition. So it is agreed for s > 0,
with A then a favourable property, that x rises to unity with all members of
the population coming to possess it in a time span of — In x,/s generations.
For example if x5 = 106 and s = 0.01, the time span would be about 1400
generations, small compared to the intervals involved in biological
evolution. And if s < O the solution dies away in a time span of order 1/s
generations, thereby implying that if A is unfavourable it will be quickly
rejected.

[ am convinced it is this almost trivial simplicity that explains why the
Darwinian theory is so widely accepted, why it has penetrated through the
educational system so completely. As one student text puts it, “The theory is
a two-step process. First variation must exist in a population. Second, the
fittest members of the population have a selective advantage and are more
likely to transmit their genes to the next generation.”

e
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But what if individuals with a good gene A carry a bad gene B having the
larger value of |s|. Does the bad gene not carry the good one down to disaster?
What of the situation that bad mutations must enormously exceed good ones
i number? Let us take a first look at the comparative rates at which good and
bad mutations are likely to arise. Most mutations consist of a base pair being
changed during the copying of DNA. Because amino acids are coded for by
triplets of base pairs with 64 different triplets available for only 20 amino
acids, the genetic code has an approximately 3 to 1 redundancy in it. This
can be taken care of to sufficient accuracy here by letting the third member
of each triplet be considered redundant. If we set 3 « 10 as the chance of
any particular base pair being miscopied, the chance of any amino acid being
changed in the protein to which a gene gives expression is ~6 * 10°. Thus a
protein with about 160 amino acids in its chain would have a chance of 1
part in a million of being miscopied—that i, if of one amino acid in its chain
being changed in a random way.

A single set of mammalian chromosomes has approximately
3« 10° base pairs, of which perhaps 95 percent play no active role, most of
the DNA being apparently nonfunctional with respect to gene products.
Taking ~108 base pairs as the total number which are genetically relevant,
the mutation rate A per single chromosome set is ~3 + 10 « 10® = 0.3 per
generation. For two chromosome sets the rate is ~0.6 per generation, so that
a considerable fraction of individuals born in every generation exhibit some
new mutation, the great majority being harmful in some degree. The
essential problem for the Darwinian theory in its twentieth-century form is
how to cope with this continuing flood of adverse mutations, a far cry indeed
from the trite problem of only the single mutation in (1.1). Supposing a
favourable mutation to occur among the avalanche of unfavourable ones,
how is the favourable mutation to advance against the downward pressure of

the others?

Merely seeking to remove bad mutations by inverse mutations which
return genes back to their original forms is a useless enterprise. Suppose that
compared to an original pristine genetic structure a species has been
penetrated by a hundred deleterious mutations each with s = -0.01, so that
the loss of competitive fitness compared to the original situation is
(1-0.01)19 = 1, For a single adverse mutation the chance of being set right
by an inverse mutation ~10? per generation. Hence the correction rate for
100 adverse mutations is ~100 » 10° = 107 per chromosome set per

O
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generation. Compared to the ongoing rate of ~0.3 adverse mutations per
chromosome set per generation the correction rate is extremely small. If the
flood of deleterious mutations is to be held in check, natural selection must
therefore do the job, not inverse mutations.

The reason why most mutations must be bad is of course that random
changes made to any complex structure lead to many more downward steps
in the operating efficiency of the structure than to upward steps. How the
occasional lucky improvement is to lead to positive evolution is a puzzle that
has disturbed many mathematicians. In a budding model or a binary fission
model, in both of which progeny inherit the genetic structure of a single
parent, the situation appears unpromising. Rare favourable mutations in
such models cannot free themselves from the more frequent unfavourable
ones, because an offspring to whom a rare favourable mutation occurs is
inevitably saddled with all the unfavourable mutations which have afflicted
its parental line.

To have any hope of success the neo-Darwinian theory must therefore
appeal to a reproductive model quite different from the model mostly
adopted by single-celled organisms. This is already an immense climb down
from what is usually claimed for the theory. Gone is its “obvious” status. Only
if a model can be found that contrives to uncouple the selective properties of
one gene from another, permitting the occasional good mutation to survive
and prosper in a sea of bad mutations, can evolution be made to work at all.
How exquisitely complex the model needs to be to achieve such a
remarkable result will be discussed in the next chapter. Then the
mathematical properties of the complex model will be investigated up to the
end of Chapter 5. Thereafter, in Chapter 6, we shall be in a position to
discuss the extent to which the neo-Darwinian theory can be considered to
work and the extent to which it cannot. To anticipate the eventual outcome
it will be found that, subject to the choice of a highly sophisticated
reproductive model, the theory works at the level of varieties and species, just
as it was found empirically to do by biologists from the mid-nineteenth
century onward. But the theory does not work at broader taxonomic levels;
it cannot explain the major steps in evolution. For them, something not
considered in the Darwinian theory is essential.

To begin the present consideration of a single parent-to-offspring model,
let us note that equation (1.1) was not normalized properly to maintain a
stable population from generation to generation. Suppose the average

NAtUi al DUICULIVH URY VIV M HIUVRZUIY L 1 UREVER

number of offspring surviving to reproductive age from an individual
possessing gene type A is o (1 + s), compared to o for the offspring from an
average individual of gene type a. Then for a stable population to be
maintained o (x) must be a function of the fraction x of the population with

A that is given by
o [(1+s)x+1-x] =1 : (1.3)

Taking the generation interval as the unit of the time ¢, a differential
equation for x(t) can be obtained from

x (t+1) = a(1+5)x(r) . (1.4)

Writing x (¢ + 1) = x(t) + dx/dt and using (1.3), we have for s << 1

ax sx(1=x) = sx(1-x) , (1.5)
dt 1+5sx

which is already more complicated than (1.1). For the boundary condition
x = x5 << 1 at t = to, the solution of (1.5) to the first order in s is given by
‘= x, exp(st) B X, . (16)
1+ x, [exp(st) - 1] x, + exp(—s?)

Unlike the solution of (1.1) for s > 0, x does not increase to unity as
¢t = —/fn x, / s but only to /2. Indeed, according to (1.6) for s > 0, x does not
increase strictly to unity at any finite time. Property A does not completely
“fix” itself in the species in any finite number of generations. A residuum of
individuals remain with the disadvantageous property a. This is on the
supposition that each individual produces the average quota of surviving
offspring for the class to which it belongs: o1 + s) offspring if the gene type
is A, o if the type is a. In practice, however, the number of surviving offspring
produced by any individual has an element of chance in it that is quite apart
from the genetic situation. Because it is impossible to recover from
extinction, chance operates as a one-way street. On occasion, individuals of

Q—‘_n——‘
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the worse genetic type a may be helped by luck, but such temporary good
fortune is of no permanent advantage because an increase in the number of
individuals of type a only gives natural selection more scope to operate.
When, however, bad luck goes against individuals of type a, finally causing
their number to drop to zero, a is extinct and the game is over. This
combination of genetic pressure with chance environmental fluctuations is
typical of many situations in biology. Whenever genetic pressure forces down
the number of individuals possessing a particular property below a certain
level, it is then an adverse environmental fluctuation that delivers the final
blow to survival.

According to the above discussion of mutation rates, the number of
potential bad mutations is of order 105, the number of sensitive base pairs.
Write n for this number, and for simplicity take all deleterious mutations to
have the same adverse selection factor s < 0. Also take the probability of each
bad mutation appearing to be the same, A / n, where A = 0.3 is the total
probability per generation of one of the mutations appearing—that is, A is
the average number of bad new mutations appearing as each offspring is born.
Fluctuations given by the Poisson distribution will evidently occur from
offspring to offspring, with A* exp —A / k! the probability that an offspring is
born with k defects. However, for A appreciably less than unity, the Poisson
distribution is dominated by k = 0 and k = 1, with probabilities 1 — A and A,
respectively, to the first order in A. Only these two possibilities are considered
in the following equations.

Write y(t), r = 0,1, 2, . .., for the fractions of the population with no
defect, with one defect, two defects, . . ., and write o (1-|s])* for the number
of surviving offspring produced by an individual with r defects. This is in a
model where from generation to generation parents die and are replaced by
their offspring, the “surviving offspring” being those who themselves become
parents in the succeeding generation. From the definition of the fractions y,,

2 V= ’ (1.7)

and from the condition that the population remains stable from generation
to generation, then

-
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o 1-|s|)"y . (1.8)
r=0,1, 2

The following equations relate to fractions y, from generation to generation
with fractions in the t + 1 generation on the left and fraction in the ¢ gener-

ation on the right.

v+ ={a(1-2)}, - (1.9)

we+D)={a@-ls)1-2)n+2 %}, (1.10)

v (t+1) ={ o [(1 —Is) (1= A)y, + (1- |s|)r_1,1 yr—l] }t

(1.11)
Taking the fractions v, to vary slowly from generation to generation,
d
yr(t+1):yr(t)+7y;_(t) s l"=0, 1, 27 (112)
Hence the differential equations for y,(t) are
dy,
L =|lg(l1-A)-1}y , (1.13)
dt [ ( ) ] 0
fgl = adyy+[a(1-1)(1-ls)-1]» : (1.14)
t
%’L = ad 1=y, + [ -2) (1) 1)y, (1.15)
1
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which are to be solved subject to the boundary conditions

Yo=1:y,=0:;r=1,2,... attimet=0 . (1.16)

Remembering that the normalization factor o is a function of time according
to (1.8), we evidently have a set of nonlinear equations for determining the
flow of the deleterious mutations, a set that is finite, although y, may become
nonzero at moderate or high values of r.

Initially o0 = 1, so that the coefficient of y, on the right-hand side of
(1.13) is —A at first. Hence y, declines initially as exp —At, which for A = 0.3
is a steep fall needing only a few generations for the effect to show in a
considerable fall away of y,. Equation (1.14) gives an initial buildup of y, that
is often encountered in flow problems of this kind. Because of the oAy, term
on the right-hand side of (1.14), y; at first increases but is then checked by
the o1 — A)(1 —|s|) — 1] y; term. Thus v, rises at first, then vy, attains a
maximum as the two terms on the right-hand side of (1.14) cancel each
other, and thereafter y; falls away to a lower value. As time goes on y,, y3, .. ,
show a similar behavior. A time plot for y, would show a curve that declines
steeply at first and then levels out to some ultimate value, §, say, while time
plots for yy, y,, ... are curves that rise initially from zero to maxima and then
fall away and level out at ultimate values, ¥y, 35, ... say. Our problem is to
calculate these ultimate values, attained in time scales ~1/ |s| generations.

As the ultimate values ¥, 3y, ... are attained, the right-hand sides of
equations (1.13) to (1.15) go to zero. The inverse procedure of setting the
right-hand sides of (1.13) to (1.15) to zero is not sufficient, however, to
determine ¥, ¥, ... . This is because such a procedure does not lead to a
unique result. The problem that remains therefore is to determine which
among a number of possibilities for g, ¥y, ... , is the solution belonging to the
boundary conditions stated in (1.16). Each solution for g, 3y, .. , is
characterized by an integer, g say, such that a coefficient in one of the
equations becomes zero,

a(1-A2)1-fs)?-1=0 , g¢=0,1,2,.. , (11D
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where & is given by

a (1-1s)) 'y, =1 . (1.18)

The solution for g, ¥1, --. , is then
y =0 ,ifr <gq , (1.19)

r

while for r > g the recurrence relation

ar(l-|ls)y, = —[a (1—,”t)(1—|s|)’“—1]y,+1 (1.20)

together with

>y, =1 (1.21)

r=q,q+l, ...

completes the solution. Let us carry this procedure through explicitly for the
case ¢ = 0, when none of the § values is zero.
In the case g = 0, equation (1.17) gives

a(1-1)=1 , (1.22)

and equation (1.20) takes the form

r—1
T 11— (1.
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which for |s| << 1 can be written to sufficient approximation as
5 = A 1 -
" 1-2 exp(rls)-1 Yr-1

(1.24)

Assuming for the moment that this case g = 0 belongs to the specified
boundary conditions (1.16), we could say the appearance of the exp (r[s|)
factor in (1.24) is something of a triumph for natural selection, for it cuts off

the 3, values sharply for r > ~1/|s|. A similar treatment for ¢ # O modifies
(1.24) to

A 1
yr = y,_ , (1.25)
1-14 exp[(r—q)ls]-1 !

giving a similar cutoff, but with a distribution for population members having

g more defects than in the case ¢ = 0. From this observation we can see

already that the case q = 0 is going to be the best one from a biological point

of view, permitting the least penetration of defects into the population.
Continuing explicitly for g = 0, we have

?;ﬁyg : (1.26)
i 2 T

=S e

1l o2 T.

Y3 = gli(—lT)'S':l 0 (1.28)

Nduugadl seievLiun alid viv Muvigoiiv rioevi

Hence equation (1.21) gives

v 1+___&_+ +l _)'___ r+ =1
S TSV R (BT
(1.29)
So long as 7 is less than ~1/|s| the terms of the series are as in (1.29), namely

the terms in the expansion of exp [A/(1 — A) |s|]. To an adequate approx-
imation we have

v, =l -—-———)“ r exp| — —l , (1.30)
rIL(1=2)ls] (1=2)lsi

which is just the Poisson distribution for average value A/(1 — &) |s|. This is
the number of defects possessed by an average member of the population,
giving a reduction of fitness by

s [

(1_/1)} = exp -4 (1.31)

compared to the initial state of affairs, the factor exp —A being to the first
order in A. [It will be recalled that terms of order A* were omitted already
in the differential equations (1.13) to (1.15).] The result, equation (1.31),
is analogous to one obtained long ago by J.B.S. Haldane for a bisexual
population.

The case q # O leads in a similar way to

1 S N
y"(r—q)!{(l—w] p{ (1—A)|s|] - (13

for r 2 ¢, again the Poisson distribution of average value /(1 —A) |s|, but with
the values of r pushed g places along. Writing r = g + k, we have
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(1.33)

The parameter g simply changes the zero-point from which the number of
defects is counted, with g = O the least bad situation for the species. The
boundary condition equation (1.16) defined ¥, as the first nonzero fraction,
requiring zero-point g = 0. If the boundary condition had been yq = y; = 0,
v, = 1,33 =y, = ... = 0,5, would have been the first nonzero fraction and g = 2
would have been the appropriate zero-point.

Why is it, one can wonder, that natural selection is able to prevent a
situation in which the average individual has a fitness lowered by exp —A
from worsening any further, when natural selection could not prevent the
original situation from worsening, an original situation with all individuals
having a higher fitness? The answer is that in the original situation with
¥o = 1, natural selection had nothing to operate on, nothing to bite on. Every
population member was equal with nothing to choose between them. Only
after mutations had produced a statistical distribution of defects represented
by the Poisson distribution with average value A/(1 - Q) |s| (i.e., A/ |s| to the
first order in A) was there a sufficient separation between lucky and unlucky
individuals for natural selection to hold the position from further decay. To
appreciate the situation mathematically, consider the case g = 0. To the first
order in A we have

1Ay A
yo=—| Zlexpl= 2|, r=012,... . (134
i\ s| |s]

With this distribution and if no further deleterious mutations were occurring,
the average number of defects in the next generation would be given by
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P el)
)

= Is] ls| (1.35)
Instead of each generation transmitting its own average A /|[s| of defects to
the next generation, selection, in the absence of new mutations, operates to
reduce the number by A, which of course is just compensated by the new
mutation rate. Once the vy, values have evolved according to our differential
equations to give the Poisson distribution (1.34), the situation is held in
balance from generation to generation by natural selection. The present
analysis brings out the important point that natural selection is not a
promoter of what is good in any absolute sense. Natural selection can only
favour what is better against what is worse. We should also notice that the
cause of the decline of fitness exp —A was the egalitarian specification of the
initial conditions (1.16). It was the utopian nature of (1.16), with every
member of the population without defects, that caused the decline. If the
initial state of affairs had possessed the same measure of elitism as the Poisson
distribution (1.34), there would have been no decline.

For the explicit case A = 0.3, |s| = 0.01, the average population member
has 30 defects. The variance is therefore 30, and it is by natural selection
favouring individuals with defects less than the average by ~(30)"2, compared
to individuals with ~(30)"2 defects above the average, that natural selection
holds back the flood of bad mutations. When for |s| << 1 the average number
of defects is large, the Poisson distribution can be replaced by a continuous

Gaussian form
2
|s] |s] A
- Py Z| |4 1.36
7 exp X X X (1.36)

giving the probability of an individual possessing between x and x + dx
defects. It can be verified that (1.36) remains unchanged to the first order in
small quantities if multiplied by [1 —{s|]*- i and if x in the exponential is
replaced by x — A. This invariance represents the effect of passing from one
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generation to the next, with the shift of x caused by the appearance of new
defects and [1 —|s|]*~ "I the selection factor appropriate to an individual
with x defects. As new defects arise, the distribution (1.36) maintains itself
due to the x-dependence of the selection factor, with the following
interesting consequence.

Suppose the individuals in any generation to be given distinctive names
and suppose each offspring to be thereafter given its parent’s name. As time
goes on, the descendants of parents with x initially less than A/|s| become
increasingly common at the expense of those with x initially greater than
A /ls|. Indeed, in the limit all individuals come to have the same name, that
of the ancestor of least x (or if fluctuations in the incidence of mutations is
included, one or other of the ancestors of smaller x). One line from among
many starters eventually dominates the population.

When favourable mutations of the same |s| are also considered to occur,
but at a rate much less than A, the effect is only to produce slight
perturbations of the Poisson distribution (1.34), perturbations that are soon
stamped out under the continuing pressure of the bad mutations. Favourable
mutations become swallowed in the flood of bad ones, as was already noted
above, so that systems which follow a single parent-to-offspring model
cannot evolve in a Darwinian sense. The best that can be done is to hold
the position, which is basically what bacteria have done for almost 4000
million years.

"Two points of principle are worth emphasis. The first is that the usually
supposed logical inevitability of the theory of evolution by natural selection
is quite incorrect. There is no inevitability, just the reverse. It is only when
the present asexual model is changed to the sophisticated model of sexual
reproduction accompanied by crossover that the theory can be made to work,
even in the limited degree to be discussed in Chapter 6. This presents an
insuperable problem for the notion that life arose out of an abiological
organic soup through the development of a primitive replicating system. A
primitive replicating system could not have copied itself with anything like
the fidelity of present-day systems (on which the estimate A = 0.3 depends).
With only poor copying fidelity, a primitive system could carry little genetic
information without A becoming unbearably large, and how a primitive
system could then improve its fidelity and also evolve into a sexual system
with crossover beggars the imagination.

@
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The second point is that bacteria break out of a binary fission asexual
model on occasion. The device is for a gene to be copied out of the circular
DNA structure of a bacterium, for the separated gene known as a plasmid to
leave its parent cell, and for it to invade some other bacterium, which need
not be of the same species. The invaded bacterium may then insert the
incoming plasmid into its own DNA, with the result that the usual
invariance of asexual lines is broken by a gene passing from one line to
another, a process with some of the mathematical aspects of the crossover
process in sexual reproduction. By this means a favourable mutation is not
irrevocably tied to all the bad mutations in the cell in which it arises. And
by plasmid transfer from one bacterial species to another, individual species
are not closed systems. The departure from the neo-Darwinian assumption
that species are closed is crucial, for in open systems evolution can be made
to work as the biological evidence suggests that it must work.

The existence of the phenomenon of plasmid transfer, and the
circumstance that the usually quoted examples of bacterial evolution are
associated with it, can give us confidence that our mathematical deductions
are correct. For if evolution by natural selection really worked in the abstract
sense in which neo-Darwinians assert that it works, then there would be no
need for plasmid transfer.

As well as suffering from an inability to profit from favourable mutations,
the binary fission and budding models are subject to an insidious erosion
process arising from environmental fluctuations, the same one-way street we
encountered earlier. To illustrate this property once again, suppose an
environmental fluctuation wiped out all individuals with values of r above
the average A /|s| in the Poisson distribution (1.34), leaving individuals with
fewer than the average number of defects unaffected. With too little for
natural selection to bite on, the resulting improvement of the species could
not be held by natural selection against the pressure of deleterious mutations.
Instead of the boundary condition (1.16), we would have a new problem
with a different boundary condition, but one which suffered like (1.16) from
having too many fit individuals for its own good. Like (1.16), deleterious
mutations would accumulate until the Poisson distribution (1.34) reasserted
itself. Consider next the opposite case in which some revolutionary maniac
wipes out the more fit individuals, guillotining those with less than A /|s]
defects. Once again, nature finds too little diversity among the remaining
individuals, so that more bad mutations accumulate until a Poisson
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distribution, but now the Poisson distribution

_ 1Y 1
Y w205 Z;(Hj exp (—m] , r=012, .., (137

the solution of equations (1.13) to (1.15) to the first order in A for the case
q = M |s|. All the y values for defects up to A/ |s| — 1 necessarily remain zero
since, exceedingly rare inverse mutations apart, there is no means of recov-
ering individuals with less than A/ |s| defects. Because of the guillotine such
individuals have gone forever.

Fluctuations of the environment have just such a pernicious effect, with
the Poisson distribution getting pushed steadily to higher and higher values
of g. There is a component of environmental fluctuation that wipes out
individuals without regard to their genetic quality. The accidental wiping out
of the genetically unfavoured does no permanent good, but the accidental
wiping out of the genetically favoured does permanent harm. Suppose (1.34)
to become established for the case ¢ = 0, A/|s| = 30. The numbers of
individuals with 0, 1, 2, 3, 4, and 5 defects in such a distribution is small, so
small as to be exposed to accidental extinction. Once this happens, in not
many generations a combination of mutations and natural selection will tend
to move the Poisson distribution toward q = 5, with all members of the
population coming to possess ~5 extra defects. This erosion process con-
tinues indefinitely as time goes on, smoothing itself instead of going in jerks,
with the distribution of defects always tending toward a Poisson distribution,
but never quite reaching it as the truncation at lower values of r progresses.
Taking the truncation rate reasonably to be one individual per generation, [
estimate an increase of q with time determined by an equation of the form

d 2)2
dq _ [AZ , (1.38)
dt Nis|
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so that the average fitness declines in G generations by the factor

LY R (139)
which is to say el in
1
N 2
=| 7z v (1.40)

generations. For a mammalian species with N = 106, A = 0.3, [s| = 0.01,
(1.40) is about 3 * 10* generations, far too short for any mammalian species
to reproduce successfully by budding or by binary fission over a time scale of
~107 generations.

Bacteria, which do reproduce largely in accordance with the present
model, have unusual properties that enable them to resist deleterious erosion
through environmental fluctuations. First, the amount of bacterial DNA is
less by an order of magnitude or more than the amount of operational DNA
in mammals (taken above to be ~108 base pairs), so that for similar copying
efficiencies, A is an order of magnitude less. Second, bacteria tend to
reproduce in explosive exponential bursts, followed by slow declines of
population with the cells adopting a defensive nonreproductive resting state,
so that they die only very slowly. Unless conditions are favourable for
replication, the tendency is thus to fall into an extreme state of hibernation,
in which life persists without consuming much in the way of resources.
Outside the artificial conditions of a laboratory where bacteria can be made
to reproduce continuously, the bacterial population tends to follow a
sawtooth pattern, with sudden jumps followed by slow declines. Since there
is little or no replication during the lengthy declines, the system is extremely
economical in the number of reproductive steps which it employs. Only 1000
generations employed exponentially with one making two, two making four,
four making eight, ... , yields a factor of increase expl000, which would
provide for the rises involved in many “teeth” of the “saw,” say exp10 in 100
“teeth,” with long resting intervals between. So can a bacterial population
withstand the degenerative erosion discussed above, and only so, I would
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think. That bacteria evade the need to maintain a parent-to-offspring chain
through an immense number of generations is again indicative of the
correctness of the mathematical argument. Eucaryotic organisms often form
spores, which appear to be devices for going into a resting state, and this yet
again supports the mathematical argument. Simple eucaryotic organisms
often have sexual cycles in addition to their more usual budding mode. Such
cycles seem odd when viewed empirically, especially when the curiously
varied details in which the cycles operate are considered. But viewed
mathematically, sexual cycles are essential, otherwise continuing genetic
erosion over many generations would lead to eventual disaster.

Two aspects of the genetic system in higher animals require special
consideration: mitochondria derived only from the female parent and the
Y chromosome present only in males. Mitochondria contain comparatively
little DNA, and reducing the amount from the ~108 base pairs of the above
discussion to ~10° would increase our previous estimate of 3 « 10# generations
as the erosion interval to ~3 « 107 generations, which would be tolerable.

The two chromosome sets in humans are 46 in total number, forming 23
pairs of which one pair is sex-determining. That in females has two similar
so-called X chromosomes but the sex-determining pair in males has one
X chromosome together with a smaller Y chromosome. The X chromosomes
experience crossover when female gametes are produced. Hence genes on the
X chromosomes are protected according to the point of view to be developed
in Chapters 2 and 3. Genes carried on the Y chromosome are not usually
considered to interchange with genes on the X chromosome, however. Genes
on the Y chromosome follow the male line of inheritance, essentially as in
the single parent-to-offspring model considered above. This view has
recently been challenged by some biologists, who have claimed that
Y chromosome genes do indeed interchange with X chromosome genes. If all
did, it would be difficult to understand what aspects it is of the Y chromosome
that generates the characteristics of maleness, since females would then
possess every gene possessed by males. I will therefore suppose the orthodox
position to be correct on this point, at least to the extent that some fraction
of Y chromosome genes follow the single parent-to-offspring model.

If effectively all the Y chromosome genes are taken to follow the single
parent-to-offspring model, and if the Y chromosome were of average length
with, say, 5 « 106 expressed base pairs, the degeneration interval given by
(1.40) would be some 20 times longer than the estimate ~3 + 104 generations
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obtained above for ~108 base pairs, that is, ~6 « 10° generations, which would
be consistent with the last stages in the evolution of the upper primates, but
considerably short of the entire span of mammalian evolution.



lapte ™

Cell Division and Crosso

The body cells of an organism, the so-calle
somatic cells, possess two sets of chromosomes,
set P from the father and M from the mother,

I reproduction being now bisexual. Unlike

bacteria whose single chromosome forms a close:

loop, chromosomes in fungi, plants, and animals

are linear gene-bearing segments consisting of

| coiled double-stranded DNA with its multitude

‘ of base pairs carrying the genetic inheritance of
|
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the organism in question. Each parent contributes the same number of
chromosomes—typically about 25 in mammals—so that in the somatic cells
there are about 50 chromosomes, present in the nuclear region surrounded by
a protective membrane.

The sets P and M can be arranged in pairs in such a way that, excepting
a sex-determining pair which requires separate consideration, the two
chromosomes of a pair are similar to each other—homologous it is said—
whereas chromosomes in different pairs are quite dissimilar. It will be useful
to denote a pair of similar chromosomes by (p, m), p being from P and m from
M. The totality of chromosomes normally present in somatic cells will be
denoted by (P, M). Biochemical processes in a cell are such that similar pairs
(b, m) can find each other, as they do during the process of division which
leads to the formation of sex cells.

The sex-determining chromosome pair is homologous in females,
(X X} say, with X, derived from the male parent and X, from the mother.
In male mammals, on the other hand, the two chromosomes of the sex-
determining pair, (Y,, X,,) say, are very different, with Y, coming form the
father and X, from the mother.

The first step in the production of either body (somatic) cells or sex cells
(gametes) is a doubling of both P and M. This occurs immediately before the
intricate maneuvers of cell division begin, so that a cell on the threshold of
division contains four sets of chromosomes, (2P, 2M). The production of
somatic cells is analogous to the binary fission model studied in the previous
chapter, namely

(2P, M) —» (P, M) + (B M) . (2.1)

The production of gametes is something quite different, however. But before
coming to it, let us not pass (2.1) without indulging in an aside. Since (2.1)
is like the model of the previous chapter, we can ask if the ideas of the
previous chapter apply with respect to the number of cell divisions that can
pass before copying errors destroy the fidelity of the system, leading to aging
and senescence of the organism.

We have to conceive here, however, of the additional possibility that
many copies are run off from a single master cell. So long as the master cell
remains undamaged, the copies would get no worse with time, and aging
should not occur. Yet almost surely master cells do degenerate and have
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themselves to be replaced from time to time. In such a situation it would be
the replacement of master cells that defined the passage of “generations” in
the sense of the previous chapter. The many ordinary cells start as copies
from the masters would be like juveniles who did not survive to maturity. At
the same error rate as before, A = 0.3 per replication of one chromosome set,
an appreciable fraction of replacements introduce a defect. If master cells
were to pass by title like kings in a dynasty from one generation to another
without selection, then defects add up cumulatively. However, because each
cell has two chromosome sets only defects of the dominant type—those
which are expressed when on one chromosome set—will be relevant. This
is because it is most unlikely that a defect will occur to the same gene in
both P and M. While the protection thus given by two chromosome sets is
a positive factor, the value s = ~0.01 given to all defects in Chapter 1 was
surely low, at least for some defects, which is a compensating negative factor.
Aging proceeds more or less linearly with time at first, as would be expected
from a steady accumulation of defects, but eventually a stage is reached
where an aging organism appeats to fall over a precipice, as would inevitably
be so should defects begin to destroy the efficiency of the copying process
itself, when severe deleterious feedback would set in, with defects generating
more defects at an increasing rate and with the copying process failing to
operate at all in the ultimate limit.

A logical device one can think of for arresting the aging process is actually
adopted in practice, which adds to one’s confidence that the line of argument
is correct. The device is to employ cells for special functions in the organism,
differentiation as it is called. In such an arrangement, defects involving one
function need not involve another function. So far as any particular function
is concerned the effect is to reduce the error rate and hence to prolong the
length of time for which an organism can exist without serious decline taking
place. In such an arrangement the function that will decline soonest will be
the one requiring the greatest amount of genetic information, which for
mammals is probably the operation of the brain, a circumstance that might
explain why some experts on geriatrics maintain that aging spreads from the
brain, and currently many people become set in their ways mentally long
before the physical abilities of the body undergo decline.

Be this as it may, the empirical fact that the degeneration of the somatic
cells occurs in not more than a few tens of generations emphasizes the
amazing ability of species to preserve information in the sex cells over
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millions of generation, and, according to the Darwinian evolutionary theory,
not just to maintain the integrity of the genetic information but even to
improve it. The aging process shows very clearly that the caution expressed
in the previous chapter was not misplaced. The mere existence of the aging
process shows, indeed, that statements one frequently hears, to the effect that
the Darwinian theory is as obvious as the Earth going around the Sun, are
either expressions of almost incredible naiveté or they are deceptions. Since,
according to the general theory of relativity, it needs some sophistication to
give meaning to the statement that the Earth goes around the Sun, naiveté
is the more probable explanation. Even so, with such widespread evidence of
senescence in the world around us, it still seems amazing that so many people
think it “obvious” that the biological system as a whole should be headed in
the opposite direction, traveling from inferior to superior, traveling as it were
from age to youth.

Although one often hears that the cells which divide by the highly
complex process of meiosis to give sex cells also undergo an aging process,
aging if it exists is certainly a much lesser effect than the decline of the
somatic cells. This means that a certain master copy or copies of the earliest
(P, M) cells must still be retained substantially without loss of genetic
integrity. The children of parents with graying hair do not grow gray hair,
proving that unimpaired genes for the production of hair are still present in
the parents, although the parents have no means of using them for their own
hair. The world is full of quack recipes for stopping and reversing the aging
process. When a recipe has an actively harmful effect—as is the case with the
Far Eastern consumption of rhinoceros horn, which is currently leading to the
virtual extinction of the rhinoceros—it is to be deplored, exposed, and
stamped upon. Otherwise such recipes are merely hilarious. The one recipe
which conceivably might be successful would be to read pristine genetic
information from the progenitor cells of gametes into the production of
somatic cells, as for instance gray-haired parents might make use themselves
of the pristine hair-producing genes which they are able to confer on their
children. Even this recourse would not be completely effective, however, if in
aging people the master program whereby cells are organized as a whole has
become defective. But experience with computers shows that master programs
are often quite short compared with the subroutines they control. If the same
were true biologically, a long time interval could elapse before defects showed
up in the basic controlling processes within an organism. A considerable
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slowing of the aging process might then be possible, which was something that
centuries ago was supposed to be achieved by mystic rites, or in the case of Dr.
Faustus, by selling one’s soul to the devil. Oddly enough, the means of
achievement probably lies in all of us, but like the graying parents we cannot
make use of our own inner store of inviolate genetic information.

This ends my aside on the aging process. In crossover, a p chromosome
exchanges a piece of itself with a corresponding piece of an m chromosome.
Immediately before cell division, it will be recalled, the chromosome sets
double to (2P, 2M), which can be arranged into a number of quartets
(2p, 2m). Although the possibilities for crossover in a quartet are wide, the
two p chromosomes are said not to exchange pieces, and neither do the two
m chromosomes, but either or both of the p chromosomes can exchange a
piece or pieces with either or both the m chromosomes. Where an exchanged
piece includes the end of a chromosome, the exchange is achieved by a single
crossover made at homologous points—that is, at positions with the same
relation to the genes on the interlinked chromosomes. Where an exchanged
piece is internal there are two crossovers between the same p and m
chromosomes. Consider as an example the case in which an exchanged piece
is internal between one p and one m, the other p and m remaining
unchanged. Then the p and m involved can be thought of as each broken
into three pieces

p % p|+ p"+ p'"’ m % m'+ m"+ m"' , (2.2)
with p' and m' homologous, p' and m" homologous, and p"™ and m™
homologous. Now join up the pieces but with p"* and m" exchanged, giving
the resultant effect

p, m % p'+ m"+ p"" m'+ p"+ m'" . (2‘3)
The quartet (2p, 2m) therefore becomes

(p’ p|+ m"_*_ p"', m'+ Q"+ m"" m) , (2‘4)
the underlined segments being those which have been exchanged.

Subsequent division of the cell containing the quartet (2.4) are controlled
by an organizational region on each chromosome known as the centromere,
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which for definiteness will be taken to lie in the exchanged pieces. The first
cell division then gives

(p’ pl + m'l + pl", ml+ Q"+ m"', m) RN (p, m'+ Q"+ m"l)
+ (pl + m" + p"l’ m) ,

(2.5)

the two pairs on the right-hand side of (2.5) being the genetic contents of the
two daughter cells, the empirical rule in what I have read apparently being that
the two paternal centromeres go together as do the two maternal centromeres.
Each of the daughter cells in (2.5) then goes into two further cells,

(p’ mv+ 2'v+ mnv) RN (P) + (mv+ Q"+ mnv) , (26)

(p'+ m||+ pll') m) RN (p|+ m"+ p"') + (m) , (2.7)

so that the original quartet (2p, 2m) has divided and subdivided after
crossover into four cells each containing a single chromosome, which may be
either the original p or m coming through unchanged, or the mixtures
(p' + m'"+ p"', m' + p"+ m") of the original p and m. It is also possible that
more complex mixtures are formed with both p chromosomes exchanging
pieces with both m chromosomes.

Returning to the full complement (2P, 2M) existing immediately before
meiosis, there are many quartets (2p, 2m) and no consistent pattern occurs
in crossover between one quartet and another, the pieces exchanged in
different quartets being different. Nor in the two successive cell divisions is
there a consistent pattern as to which of the four possibilities from each
quartet goes to a particular gamete. Hence the possibilities for variation are
immense, with the parental genes being shuffled to an amazing degree in
only a single meiosis. When all the gametes produced by an individual are
taken together, the shuffling attains a considerable fraction of the immense
possibilities for variation that exists between the chromosome sets P and M.

Notice that shuffling takes place within each separate individual, not
when male and female mate to produce an offspring. The latter has (P, M),
with P the particular male gamete and M the female gamete that happen to
come together. It is P and M separately which have been shuffled. From the
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point of view of the offspring, it is the paternal grandparents’ genes which are
shuffled in P and the maternal grandparents’ genes in M. Shuffling is two
generations back from the present generation. In the shuffling process half the
genes which our grandparents transferred to our parents have been discarded.
Viewed from the point of view of grandparents, no immediate mixing of genes
occurred in their immediate children. Mixing occurred in the grandchildren,
which is perhaps why the relation between children and their grandparents is
so clearly different from the relation with their immediate parents. In a
genetic sense nothing is really achieved between male and female until, in the
second generation, their grandchildren are born.
In a randomly mating population, genes circulate very rapidly indeed.
In order to make the following statements more precise rather than for any
reason of principle, let us omit selective factors for the moment. Also let
the population N remain stable from generation to generation and posit a
highly egalitarian society in which every individual is a parent of two
surviving offspring. Consider the old paradox. Each individual in the present
generation has 2 parents, 4 grandparents, 8 great-grandparents, and so on back
to 26 ancestors G generations ago. But for G > (/nN/£n2), the number of
ancestors on this reckoning exceeds N, which is impossible. The error lies of
course in the implicit assumption that all ancestors are different. One can think
of a genealogical tree in a reversed time sense, with two branches back into the
previous generation from any individual, with four branches into G = 2, eight
branches into G = 3, and 2C branches in general. When G << (£nN [¢n2),
there will not usually be a path among the branches going back from the
individual in question to a particular individual existing in the population G
generations ago. When G = (#nN/£n2), however, there is usually a path
going from any individual in the present generation to any particular
individual in the population G generations ago. After G = (£nN/ Inl)
generations, most individuals in the current population have ancestors in
common, while for G >> (£nN/{n2) there are many paths connecting any
individual today to any specified individual G generations ago, counting
paths among the branches as being different if they have any sequences of
generations that are different.
G = ({nN/fn2) is a remarkably short number of generations, for
N = 106 only about 20 generations. Taking a human generation to be 20 years,
in only four centuries a population of a million individuals who mate at
random become related to each other. Increasing N to 10° individuals only
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increases the mixing time to six centuries. This makes nonsense of the highly
restricted family connections of which so many people are intensely proud. By
separating out a small fraction of N and by restricting mating to individuals
within the small fraction, a tighter “family” can of course be achieved.
Through deliberate mate selection aristocratic families and castes can be
created, with the terrible genetic consequences to be considered in Chapter 5.

Suppose there are ~5000 genes to a chromosome, with about 2 « 10°
genes in all is (P, M). After G = (/ nN/fn2) generations, the average
expectation for the number of genes that we have received from each
individual who existed G generations ago is ~2 « 105/N, which for N = 106 is
only 0.2. This tells us that most of the genealogical paths linking us to our
distant ancestors carry no genes. Although the paths actually existed, with
an actual offspring being born for every link of a path from one generation to
the next, most paths carry no genes. This is because half the genes of its
grandparents are lost whenever an offspring is born. If we denote present-day
individuals by I}, I, ..., Iy, and those which existed G generations ago by
I(G), L(G), ..., I\(G) a path connecting I to I(G) becomes less and less
likely to carry genes, and so to be a genetically relevant ancestral connection,
as G increases toward £nN/¢n2. Most of the paths from a particular present-
day individual I to I(G), I(G), ..., Iy(G) carty no genes but there is an
occasional path that carries a whole block of genes, thereby enabling the
average value of genes per path to be 0.2.

It is easy to estimate the size of the occasional gene block received from an
ancestor of G = (£nN/{n2) generations ago. Starting with the chromosomes
as they were G generations ago, and supposing one crossover per chromosome
per generation, there will have been G breakage points, so that crossover will
have the effect of chopping the earlier chromosomes into G pieces, each with
~(5000/G) genes. For G = 20, this is ~250 genes. Thus, occasionally, from one
of our ancestors of 20 generations ago—an ancestor at random—we inherit
two or three hundred genes, and from the overwhelming majority of ancestors,
nothing. This explains why the population seems so varied in its fine detail and
why at first sight there seems to be no thyme or reason in it.

From any assigned starting point, crossover divides the chromosomes into
finer and finer pieces (which are, of course, constantly being reassembled) as
time goes on. After ~5000 generations the pieces become of the order of a
single gene, with the entire gene associations one with another changed from
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what they were at the start. For humans this is approximately the length of
time back to the emergence of Cr6-Magnon man, the usually supposed
ancestor of modern humans. Taking N = 10 in Cr6-Magnon times, we would
therefore have ~2 « 10°/N = 20 genes from each of our Crd-Magnon ancestors.
Unlike the situation (£nN/£n2) generations ago, for which we have no
genetic connection to most of our ancestors by birth, we have, oddly enough,
a rather uniform connection to our really distant ancestors. This is achieved
through the immense multiplicity of paths that arise for G large. Most paths
again carry no genes, but the great number of them connecting I; to any [,(G)
additively produce an average of a few genes. This is when G becomes so large
that crossover has chopped up the original chromosome into very fine pieces.
To summarize a curious situation, we each have a strong genetic
connection to our immediate forebears and to recent ancestors shown in the
family trees, which people are anxious to know about to the extent that
constructing family trees for others can be quite a profitable line of business.
Experience shows that after a handful of generations such trees become
impossibly diffuse if they are at all complete. Professionals in the business
then miss off-branches by the dozen. Since loped-off branches could be just
the ones that carry blocks of genes, the trees become biologically
meaningless. After only a few generations precise detail therefore becomes
lost, and we have to look instead to averages. Although the average English
person today has parent-to-child paths going back to a considerable fraction
of the inhabitants of Tudor England, most such connections have no genetic
significance. Some do, however, with considerable blocks of our genes being
derived from individuals whose identities are unknown to us—the
individuals could just as well be Shakespeare or Henry VIII as anyone else.
Curiously enough, the chance of an explicit genetic connection existing to
an inhabitant of Roman Britain is greater than to an individual of
Elizabethan times, while for still greater time spans back into the Stone Age,
the chance becomes greater still and, ultimately, for our distant Cr6-Magnon
ancestors becoming high. An outsider who observed the passage of events
over a time scale of tens of thousands of years would probably think of us not
as distinct individuals but as one creature, rather as, genetically, we may
think of a swarm of bees as just one bee. I am surprised that Christians do not
use this consideration as an argument in their favour, for it adds logic to the
ethic of treating your neighbour as yourself.

—B-
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It will be recalled that the average number of defects possessed by an
individual for the single parent-to-offspring model studied in Chapter 1 was
A /|s|, where A was the rate of occurrence of defects per individual per
generation and s < 0 was the selective penalty imposed by each defect, taken
all to be of the same severity. The numerical values considered in Chapter 1
were A = 0.3, |s| = 0.01, for an average of 30 defects, which is similar to the
number of chromosomes found typically in the cells of plants and animals.
Crossover apart, the random choices at meiosis of whole chromosomes, with
a gamete sometimes getting a p chromosome and sometimes an m chromo-
some from the P and M sets, already decouples a favourable mutation
occurring on a particular chromosome from defects present on other
chromosomes. Only defects on the same chromosome can therefore interfere
with the penetration of a favourable mutation. With the number of defects
per chromosome of order unity, a favourable mutation is already halfway free
to show through the defects, even in the absence of crossover. This no doubt
is the reason why the genetic material of plants and animals is indeed
fragmented into an appreciable number of segments which can be treated
independently of each other at meiosis—instead of being present essentially
as a whole as in bacteria. Defects with [s| > ~0.01 are largely coped with by
multiple chromosomes.

Crossover permits a still finer gradation, which is to say a decoupling
appropriate to smaller selection factors than those studied in Chapter 1. A
similar analysis to that of Chapter 1, but for |s| = 0.0001 and with the same
A= 0.3, would lead to the average individual possessing ~ A |s| = 3000 defects
with ~100 present on each chromosome. If favourable mutations with
s = 0.0001 are to show through so large a number of adverse mutations a system
for dividing chromosomes into pieces less than one percent of their length and
of then reassembling them randomly is necessary. This is just what crossovers
operating for upward of 100 generations succeed in doing. A few divisions
occurring in each generation, effected by the device of exchanging pieces
between a p and an m chromosome, does the job splendidly provided the
exchanged pieces are randomly chosen at each generation, which appears to be
the situation.

It is a fair inference from the existence of crossover and from the shifts
to which both plants and animals go in order to maintain sexual repro-
duction—shifts ranging from the devices of plants to secure cross-pollination
by insects, to the pheromones employed by insects themselves, to the gaudy

g

LEU DIVIdMIUA alil vtussoyvl

fantail of the peacock, and of course to human examples of which there is
essentially no limit—that positive evolution must turn on minute advantages
with s = 104 or even less. Otherwise, a simpler system would be sufficient, as
for instance fragmenting chromosomes into smaller pieces, or micro-
chromosomes, such as are actually found in birds and reptiles. The latter
system, apparently not being sufficient, was abandoned in mammals.

To add mathematical substance to what has just been said, consider a
situation like that studied in Chapter 1 in which natural selection checks the
flood of deleterious mutations from overwhelming a species. This can only be
done, as we saw in Chapter 1, through the random incidence of mutations
setting up fluctuations in their number between one individual and another.
Natural selection then distinguishes between those individuals with fewer
and those with more than the average number, i say, of defects. If the adverse
mutations all have the same |s|, the balance imposed by natural selection
follows the Poisson distribution according to which

k

K - 2.8
T SXp K (2:8)

is the probability of an individual at random having k defects.

Suppose now that a favourable mutation of selective advantage S > 0 is
possessed by a fraction x of the population, and suppose the favourable
mutation to be uncorrelated with the defects, by which is meant that
individuals with or without the favourable mutation have the probability
(2.8) of possessing k defects. The problem is to determine how x varies from
one generation to the next, the population being constrained by the
environment to stay fixed.

In a sexual system with the double set of genes (P, M), there are three
possibilities for a favourable mutation—it may be present on one or other of
P and M, it may be present on both, or it may be present on neither. Since
in later chapters these three possibilities will be treated in detail, it is
sufficient here to simplify them to two—either an individual possesses the
favourable gene and so enjoys a selective advantage 1 + S, or not. The
number of surviving offspring for an individual with k defects and with the
favourable mutation can then be written as o(1 + S)(1 —|s|)*, while an
individual with k defects but without the favourable mutation leaves an
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average of ol-|s])* offspring who survive to maturity, where o is a
normalizing factor chosen so that the population remains fixed, that is to say
k

a[x1+8)+(1-x)] Z(l—|s|)ki— exp—u =1 .(2.9)
k=012,... K

Using the same method as in Chapter 1 to obtain dx/dt, we have

dx k
x+— = ox(1+S) Z(I—ISI)k'u— exp — U , (2.10)
dt k=0,1,2,... k!
whence
gl Al+S) (2.11)
dt 1+85x  ° '
that is,
dx x(1 - x)
& _ gAY 2.12
dt 1+ Sx (2.12)

which is just the positive selection the favourable gene would have in the
absence of the defects. If the Poisson distribution (2.8) were replaced by
probabilities py, T py, = 1, the result would be the same. The result depends
only on uncoupling the favourable mutation from the defects.

Just as it makes no difference if u* exp — k! is replaced by py, it makes
no difference to the derivation of (2.12) if —|s| in (2.9) and (2.10) is replaced
by |s|. The advantageous mutation S is also selected independently of other
advantageous mutations, which means that advantageous mutations select in
parallel with each other, instead of only sequentially as one would have for
the model of the previous chapter if one were to somehow be rid of the more
frequent deleterious mutations in that model. If in the single parent-to-
offspring model one had two advantageous mutations S; > S, > 0 in different
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lines and no disadvantageous ones, the possession of S; could be viewed as a
disadvantage compared to the possession of S;. Hence, after lines without
cither mutation killed out, S, would proceed to kill out S,. In the sexual
model with crossover, on the other hand, S; and S, go their separate ways, so
permitting both to be favoured selectively.

This latter advantage of sexual reproduction seems to be the strongest
argument claimed in the books for it over the asexual model of Chapter 1.
Fisher’s The Genetical Theory of Natural Selection carries the point in the
exquisite ellipticities that were so characteristic of Fisher. With quite some
searching one can find it in Sewell Wright’s treatise in four volumes,
Evolution and the Genetics of Populations (University of Chicago Press, 1984)
and more directly and clearly in ]J. Maynard Smith’s The Evolution of Sex
(Cambridge University Press, 1978). What one does not find, however, is an
appreciation of the really crucial aspect of the matter, that only with sexual
reproduction accompanied by crossover can positive mutations make
headway against the deleterious mutations which occur with far greater
frequency, and which otherwise would swamp the advantageous mutations,
not permitting them to make any headway at all.
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A Bisexual Model with Grosso

The immense simplification of being able to.
genes independently in a bisexual model with
crossover permits more sophisticated mathematics
to be used, mathematics that combines selection

and stochastic effects within the same formalism.

A word of caution first, however. On a broad
perspective the selective factors contributed by
different genes are interlinked. Where enzymes

cooperate together in groups—for example, the
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thirty or so enzymes with functions in the process of glycolysis, or the twenty
or so cytochromes involved in the process of electron transfer—complicated
functions of all the enzymes in a group affect the performance of an
organism, rather as the performances of a soldier in battle depends on those
who flank him as well as on his own inherent qualities. Yet, in what follows
I shall consider the selective factors of genes to be independent of each
other, and there are two reasons for doing so. There is no magic about the
term “gene,” and so far as the mathematics is concerned we can take a set of
the kind just mentioned as acting together to form a kind of supergene, at
any rate so long as the DNA for all the genes of the set are sufficiently
adjacent to each other for them to be fragmented only rarely by crossover.
The second reason is mathematical, namely that when selective factors are
small compared to unity, as they are normally supposed to be in neo-
Darwinian theory, even complex functions can be linearized by suitable
expansions, much as potential functions in dynamics are linearized for small
motions, even though they may depend on many coordinate variables.

To this point we have passed in a single step from one generation to the
next, relating parents only to the minority of their offspring who survive to
become parents themselves. This was done by writing ct(1 + s) as the number
of surviving offspring of a parent with some selective property A, compared
to o alone for the number from a parent with the alternative property a,
adjusting ot so as to maintain a fixed population. The factor 1 + s was thus
the relative “fitness” between individuals with A and those with a, a concept
with meaning in relation to a specific environment. In general, “fitness”
cannot be determined by genetics alone. Let A and a refer, for example, to
the colouring of a female ground-nesting bird, with A giving camouflage
against hawks in one geographical locality and a in another locality. The
value to be assigned to s evidently depends on which locality is in question,
with s switching sign from one to the other.

In addition to obvious physical factors such as water supply, soil content, or
annual temperature range, the “environment” must cover not only the presence
of other species but even subtle aspects of the species under consideration.
Knowledge is a major part of the present-day human environment, for example.
In the early human communities of 50,000 years ago even rather moderate gene
defects must have been essentially lethal, s = —1, but with modern medical
knowledge and with the emergence of compassionate societies, sufferers from
such defects can nowadays reach reproductive age. Moreover, since sufferers
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from some diseases tend to be hyperacrive sexually, the appropriate value of s in
such societies may become > 0, with a previously lethal handicap having
become a biological advantage.

There is no single environment specifying a single set of genetic
selective factors. Even at a particular moment the Earth offers an immense
range of environments, and with respect to time the range is greater still.
Moreover, the environment is capable of changing with dramatic
suddenness. Hence our postulate of a fixed population maintained in a fixed
environment relative to which selection takes place is a highly idealized
concept. Or, more precisely, from a mathematical point of view we can
think of the hypothesis of a fixed population in a constant environment as
generating a neighbourhood solution. Neighbourhood solutions can be
joined piecewise to obtain broader solutions, possibly with discontinuities in
the derivatives of functions arising in cases of sudden environmental shifts.

Let us come now to the important question of how selection really
operates. While it is sufficient to proceed from parents to surviving offspring
with the aid of the normalizing factor o, much is thereby omitted. The herring
is said to produce of the order of a million offspring for every one that survives
to maturity. What is it that decides the minute fraction of individuals that
survive to reproduce the next generation? The huge numbers of juvenile
herring provide food for a great range of sea-dwelling plants and animals. The
multitude of ways in which juvenile herring come to a sticky end—Iliterally so
where some plants are concerned—is a topic for the excellent nature films
which are so justly popular on television. 1 have heard commentators imply
that the herring parents were obliged to produce 1,000,000 juveniles to satisfy
the appetites of predators in order that the latter will graciously permit one
juvenile to grow to maturity. This has to be wrong. In a free-for-all, there is no
way in which 999,999 juveniles are going to be consumed and the last one
spared. The slightest additional snap of the jaws and the last one also will be
gone. It has to be that somewhere in the environment there are safe niches
that the predators cannot invade. When safe niches are known to parents, as
they are for some species, the niches are purposively sought out. Where safe
niches cannot be known to parents, the only recourse is to produce such an
immense flood of juveniles that a few of them are certain to chance on the
fortunate nooks and crannies.

Write N for the adult population, taking N to be constant from
generation to generation. In the model to be studied below it will be
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assumed that M juveniles are produced in each generation with M
appreciably larger than N, and it will be further supposed that M is
independent of N. Clearly this cannot be strictly true, since there can be no
juveniles at all when N = 0. If N falls too low, a species cannot produce
enough juveniles to exploit the niches available to it. In such circumstances
the species becomes “endangered” as one says. But endangered species aside,
so many juveniles are produced that we can conveniently take M fixed.

Let xy and 1 — x; be the frequencies at time t = 0 of the alternative forms
A and a of a particular gene, meaning that of the 2N sets of chromosomes
possessed by the N individuals 2Nx, have A and 2N(1 - x;) have a.
Omitting selection for the moment, what can we say of the frequency of A
in the next generation, at t = 1, taking the generation interval as the unit of
t? Let the N individuals mate at random, in which case any chromosome set
possessed by any of the M juveniles in the next generation has a chance x,
of carrying the A form of the gene, and the probability of the A form
appearing 2rM times in the next generation will be the term in p'g?™ -7 in
the binomial expansion of (p + q)*, where p = x5, ¢ = 1 — xo. Behind this
random transmission of the A form is the consideration that each of the N
individuals produces a supply of gametes even larger than M/N, with
random mating of the N individuals interpreted as choosing their gametes
at random, M female ones and M male ones, both having x; as the frequency
of the A type gene. It is possible to define random mating in other ways that
lead to results that are different in detail but not in principle.

Terms in the expansion of (x; + T — %)M can be approximated for
M >> 1 by a Gaussian distribution of variance 2Mxy(1 ~ xo). The probability
that the frequency of A lies between x and x + dx among the M juveniles of
the next generation is

M M(x—xo)2

—F— ¢&Xp|-— dx (3.1)
ﬂrxo(l—xo) xo(l—xo)

in this Gaussian distribution. This is provided x; is not close to the end points
of the range 0 < x < 1, and taking M >> 1 so that the integral of (3.1) over
0 < x <1 is essentially the same as over — oo < x < oo,

The M juveniles are reduced to N at maturity, with the ratio
M / N highly variable from one species to another. Thus M / N is ~10° for the
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herring but only ~5 for birds and for humans under primitive conditions.
Without selection the reduction from M to N would again be at random, in
which case the probability of the gene frequency lying between x; and x;+ dx;
among the N individuals at maturity would be

N( x)2

N X=X

_ - ———\d , (3.2)
\ 7x (1-x) =P x(1-x) g

should the gene frequency among the M juveniles happen to be x. The total
probability of the gene frequency lying between x; and x;+ dx, at maturity is
therefore given by multiplying (3.1) and (3.2) and by then integrating with
respect to x, that is

2 2
MN expl - M(x—xo) _ N(xl—x) dx
mo(l—xo) xo(l—xo) x(1-x) | Jx(1-x)

(3.3)

O oy 2

dx1
NE3

For M >>N >>1,
M(x X )2
_._M__ - ___J__ = olx— , 3‘4)
1 Tcxo(l—xo) °AP xo(l—xo) (x xo) (

the Dirac delta function, whence (3.3) is simply
2
Nix, —x
_N_ exp| — _(1_L) dx, , (3.5)
7z:x0(1—x0) xo(l—xo)

=
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the same as would have been obtained by going immediately from the N
adults at t = O to the N surviving adults at ¢ = 1, the adults who will give rise
to the second generation at t = 2.

Likewise, the probability that the gene frequency at t = 2 lies between
x; and x,+ dx; is

N(x2 — x1)2

xl(l—xl) x

exp| — (3.6)

ml(l—xl) 2 ’

when the frequency at t = 1 is taken as x;. Combining (3.5) and (3.6), the
total probability of the adults in the second generation having a frequency of
the gene-type A lying between x; and x,+ dx, is given by

dx, \/mo(jlv_xo) i\/nxl(jlv—xl) .

2
exp| — N(xl—xo) B N(xz—xl) dx,

xo(l—xo) xl(l—xl)

2

(3.7

Since the population number N can be taken large, say N = 105, the
exponentials in (3.7) give sharp peaks about x; and about x;. Hence, so long
as %, is not very close either to zero or unity, it is sufficiently accurate to

replace x;(1 — x;) by x(1 — xo), and also to expand the range of integration
to — o0 < x1 < o0 | giving

~ N (x2 - X )2
P R xo(l - xo) exp m dx, . (3.8)
o—g—o
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A similar argument going from t = 2 to the third generation at ¢ = 3, and so
on to the r’th generation at t = r gives

N 2
exp | — M= x0) dx, (39)

rnxo(l—xo) rxo(l—xo)

for the probability of the frequency of A lying between x, and x,+ dx, after
r generations. This is so long as the successive spreading of the exponentials
from generation to generation does not lead to values of x, with appreciable
probability and such that x(1 — x,) is significantly different from x,(1 — xp).
When r becomes so large that this is not the case, the simple progression from
generation to generation must cease, and a more complex procedure is then
required. Before developing a formalism for such a procedure, let us return to
what has so far been omitted—the effect of selection on the frequency of A.

Each generation has been considered to consist of two stages, a first
stage from N mating adults to M juveniles, and then a second stage from the
M juveniles to the N mating adults of the next generation. Although
selection can enter both these stages, the second is usually the more
important, and nothing of principle will be lost if we confine selection to it.
The frequency of A among the juveniles being taken as x, the number of
juveniles with A on both chromosome sets is Mx? to within a fluctuation
that is only of small effect compared to the fluctuations already studied
above. The number of heterozygotes with A on one chromosome set and a
on the other is 2Mx(1 — x), and the number with a on both chromosome sets
is M(1 — x)2. Write a(1 + s) for the chance of an (A, A) juvenile surviving
to reproduce the succeeding generation, write 0(1 + hs) as the chance of a
heterozygous juvenile, (A, a) or (a, A), surviving to maturity, and o for an
(a, a) juvenile. Then o is determined by

aM|(1+5)x" +2(1+hx)x(1-x)+(1-xf] = N . (3.10)
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And the systematic change of the frequency x to x + dx/dt in the parents of
the next generation is given by

2N(x+%) s aM[2(1+s)x2+2(1+hs)x(1—x)] . (1)

The right-hand side of equation (3.11) takes account of surviving
heterozygotes having one chromosome set with A, each surviving (A, A)
individual having two chromosome sets with A, and each surviving (a, a)

individual being without A. From (3.10) and (3.11),

dx ox(1— ) [x+h(1-2x)] (3.12)
t 1+ sx[x +2h(1 - x)]
If |s| << 1, (3.12) can be written to sufficient accuracy as
% = sx(l—x)[x+h(1—2x)] . (3.13)
In the special case h = 1/2, (3.13) takes the even simpler form
% = %sx(l—x) . (3.14)

Except for the factor 2, this is the same as the effect of selection in the
asexual model of Chapter 1.

As well as the right-hand side of (3.13) being zero for x = 0 and x = 1,
there is a third zero for

X fonad —_— . (3.15)

A DINCXHiT MOUCT WILH LIUNSBYEL

In order that (3.15) be a permissible value for the frequency of A, it is
necessary that

0 < <1 , (3.16)

that is, h > 1 or h < 0. To decide the stability or otherwise of the equilibrium
value (3.15) in these cases, differentiate (3.13), the requirement for
stability being

d*x h(h—1)
— = —yg——= < 0 , 3.17
(dtzj x=hI2h-1 2h—1 ( )

which is satisfied if either s > 0, h > 1 or s < 0, h < 0. Stable situations with
x = h/(2h — 1) are known as balanced polymorphisms.

In studying a balanced polymorphism, it is really unnecessary to
distinguish the two cases s > 0 and s < 0. The selective parameter was
defined above by the condition that the ratio of the survival capabilities of
juveniles of types (A, A) and (a, a) be 1 + s, with the latter in the
denominator when the ratio is taken. Equally, we could have written a as
the surviving fraction of type (A, A) and (1 + s) as the surviving fraction
of type (a, a), when the ratio of survivors defining s would be inverted, with
the sign of s reversed. Choosing the definition that leads to a specified sign
of s, s > 0 say, determines the condition h > 1 for a balanced polymorphism
to exist. The essential condition for a balanced polymorphism is that the
heterozygotes, (A, a) or (a, A), must have a selective advantage over both
homozygotes (A, A) and (a, a).

Stochastic fluctuations from generation to generation will cause the
frequency x to be constantly shifting from the equilibrium value h/(Zh — 1),
but because the equilibrium is stable, the frequency always returns to this
value, which is thus the complete solution to the behavior of A in such a
case. Although I have heard expressions of opinion to the contrary from
biologists, balanced polymorphisms are usually considered to be rare, and so
I will consider them to be—otherwise there would be little more to do. From
here on, therefore, I will suppose that A does not satisfy the condition for a

o—Ju—o0
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balanced polymorphism. Also from here on, [ will make one or two minor
changes of notation, as well as taking |s| to be small compared to unity, in
which case (3.13) is sufficiently accurate.

In the first generation the gene frequency changes due to selection from
Xp to X + Yo, where from (3.13)

Yo = sxp(1- xo)[x0 + h(1- 2xo)] . (3.18)

In contrast to (3.18), which is a clear-cut increase or decrease in the
frequency of A according to the sign of s, the stochastic fluctuation of the
frequency, given by (3.5) for the first generation, may lead to either an
increase or a decrease of frequency. Combining (3.5) and (3.18), the
probability of the frequency of A lying between x; and x; + dx; after the first
generation is given by

N(xl ~ Xy —y0)2

dx
xo(l—xo)

exp - (3.19)

ﬂxo(l—xo)

And if x, is such that x;(1 — x;) is not appreciably different from x,(1 — x;),
we can step along to the second generation, and so on to the r’th generation,
provided x,(1 — x,) is not appreciably different from x,(1 — x,). Choosing r by
this criterion, the probability that after r generations the frequency of A lies
between x, and x,+ dx, is given by

_ N(x, — Xy~ ry0)2
exp rxo(l — XO) dx, . (3.20)

rﬂxo(l—xo)

Instead of writing the times marking the generations by 0, 1, 2, ...,
1, ..., with a trivial change of notation we can write ty, t;, ty, -.- , t;, ... , With
t.—t,_; = 1, when (3.20) takes the form

gl
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N _N(xr—xo—yotr_to)z
\[EXO(l_xo)(tr _t()) o xo(l—xo)(tr _[0) : (3.21)

Defining a “propagator” by

k(x, t; Xy, t,)

—2
- N N[x = x =yt 1)
i \/;O(I_xO)(t ‘to) o xo(l—xo)(t _to) B2

k(x, t; X, t) is the probability to go from the frequency x, of gene-type A at
time t, to the frequency x at time t, subject to the condition that ¢ — t; must
not be so large that k(x, t; %o, to) has appreciable values with x(1 - x) differing
significantly from xy(1 — x). To give verbal assurance that the latter
condition is satisfied let us refer to (3.22) as the "infinitesimal propagator.”

Change the notation now so that t, t;, t;, ... are times such that the
infinitesimal propagator can be used sequentially, t, to ty, & to t;, ... , the
passage of time being thus broken up so that (3.22) can be used at each step.
Note also that if instead of the gene frequency being specified uniquely at
the initial moment t, we are given the more general boundary condition at
t, that the gene frequency has the probability distribution ¢(xo, to)dxo, then
the probability distribution ¢(x;, t;)dx; for the gene frequency at time ¢, is
given by

¢(x1, tl) = k(xl, s X to) ¢(x0,t0) dxo

Oy

(3.23)

For the next step from t; to t, we have in the same way

1
¢(x2, 1‘2) = Jk(xz, tys xl,tl) ¢(x1, tl) dx, ,  (3.24)
0

g
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k(x;, t;; x, t;) being given by writing Xy, vy, t; for xo, Yo, to and x,, t; for xy, t; in
equation (3.22), with y; defined by

y = sxl(l—xl)[x1+h(1—2x1)] , <<l . (3.25)

Proceeding similarly step by step to time t,,

1 1

¢(xr, tr) = ‘([I k(xr,tr; xr_l,tr_l) k(xr_l,tr_l; X, o5 tr—Z)
0

k(xl,t1 ; xO,to) (])(xo,to)dxr_1 dxr_z... dx0

(3.26)

This result can be written compactly in terms of a finite propagator
K(x'n tr; Xo, tO)’

o(x,.1,)=

Oty b

K(x0t,5 Xg0t0) 8(%0 1) dg » (3.27)

where

K(x,,tr ;xo,to)

O‘—-—.’—‘
Oty

r—1
{pzok(xp+1,tp+1;xp,tp)}dxr_l...dxl . (3.28)

with

-
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N

k(xp+1’ Lpi1s Xpo tp) - \[n'xp(l—xp)(t + _tp) )

P

2
N(xp+1 ~Xp " Vplps1” tp)

xp(l - xp)(z.‘p+1 - tp)

yp=sxp(l—-xp)[xp+h(1—2xp)] , I << 1

exp| —

(3.29)

The present formalism has analogy to problems in statistical mechanics
in which repeated integrals like (3.26) are sometimes converted into a single-
path integral, so that one can wonder if the present problem can be expressed

as a path integral. With a suitable change of the variables it can.
Defining 6y, ... , 6, by

cosep =1—2xp, p=0,1 .., r, (3.30)

the range of 6, corresponding to 0 < x, < 11is 0< 6, <. After some reduction
we then have

1.
xp(l—xp) = Zsm2 6, , (3.31)
dx - L 6._do
b= Esm ,d0, (3.32)
yp= s sintQ,[l+eos8,2n-0] (3

g
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and

2
N(xp+1 —*p _yptp+1_ tp)

exp| —
xp(l - xp)(tpﬂ - tp)

2
N(cosep - cosOp+1 —2yptp+1 —t )

p
sin’ Gp(t“1 - tp)

=exp| —

(3.34)

It will be convenient to let the time-steps t,,; — t, all be the same, € say.
Defining 66, by

59p = 9p+1 -0, , (3.35)
and taking € small enough for 6,.; — 6, to be small,
coS 9p+1 = cos 0, - 50p sin@, (3.36)
whence (3.34) takes the more compact form
2
00 2y
exp| - Ne| —£ - —&- .
[ € sinepJ (31
Lastly, defining
e
=15 (3.38)

A Bisexnal Model with Crossover

]{(p)zN(é_@E - —z—y—)

c Sin9p
2
00 1 . YA
=N{ ?p - Zs s1n9p(1+cosep2h—1)j\ s (3.39)

Equation (3.28) can be expressed in the form

nder—l ﬂ'dO r—1
K(0,.t, ;00,t0)=J. j——l exp{— € Jf(p)} .(3.40)
0 o 0 Q p=0

The function 6(t) can be thought of as a path going from 6, to 6, by way of
6, at time t;, 6, at time &y, ..., 6,_j attime t,_y, with the path consisting of
straight line segments between consecutive values of the time. In the (6, t)
plane start at 6y, t and go by a straight line segment to 8, t;, then by a
straight line segment to 6, t, and so on until @, t, is reached. The multiple
integral (3.40) is a summation over all such functions 6(t). Moreover, for
e <<1

- rag 1 g
e Y, H(p) ENJ.[E; -7 sin9{1+cos9(2h—l)}} dt ,
p=0 0

(3.41)

the time integral being taken along 6(t) and so being a functional of 6(t).
Using a notation introduced by Feynman (e.g., R. P. Feynman and A. R.
Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, 1965), (3.40)

has the form
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K(6,.1, 3 6,,ty)

or (a6 1 —
= J.exp —Nj{— - =5 sin0(1+c039 2h—l)} dt {70 (t) .
6, i da 4

(3.42)

Given that the gene frequency at ty is 6, the probability of the gene frequency
being 6, at t, is therefore obtainable by a summation over all paths going from
6, to 6, that satisfy the condition of being confined between 8 = 0 and 6 = T,
with each path having a weight factor

Tde 1 — 2
exp| — N;{E - Zs sinf (1+cost9 2h——1)} dt . (3.43)

In quantum mechanics, the problem of a particle in a potential field can
be solved in a broadly similar way, with K(x, t; xo, t;) being the wave
function at time ¢ for the case in which the particle is at x, at time . If in
quantum mechanics an experimental procedure were set up for determining
where the particle happened to be at times intermediate between t, and ¢,
we could say that the particle followed a certain explicit path. But in the
absence of an experimental procedure the wave function K(x, t; xp, t;) is
necessarily obtained from a summation over paths, the procedure being
similar to the above discussion of the gene problem. If in the latter we take
a look at a particular population, in sufficient detail to determine the
frequency of A at moments intermediate between t;and t, we can say by
what explicit path the frequency went from its value at t, to its value at t.
But if we do not look explicitly at the population it is impossible to say what
particular path has been followed. Just as in quantum mechanics all we can
do is to assign probabilities involving a summation over all paths.

There are two differences from quantum mechanics, however. In the
latter a potential function enters the time integral in a factor analogous to

-
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(3.43) only linearly, whereas the selection term in (3.43) is quadratic in s.
Although second-order terms in s can usually be neglected for s << 1 vs‘zith
impunity, this is not so in (3.43) it may be noted. Except for small time
differences t. — to, the term in s? must be retained in attempting to evalua.te
the path integral (3.42). Also it may be noted that in quantum mechanics
the index of the exponential in the path integral is purely imaginary instead
of being real as in (3.42), a circumstance which is analogous to statistical
mechanics, as was already said above.

But the big difference is that a particle confined in quantum mechanics
to a coordinate range 0 < x < 1 is usually regarded as being restricted by a box
with perfectly reflecting walls, whereas in the gene problem paths which go
to x = 0 or to x = 1 are not reflected, they stop. At x = 0, the gene-type A
becomes extinct and cannot return, while at x = 1 the type A becomes
possessed by every individual and the situation stays that way thereafter.
Thus the gene problem is like a particle in a sticky box, with the particle
adhering permanently should it touch the walls of the box.

The effect of extinction and of fixing in the gene problem is that

O Sy

K (x.t5 %08 ) dx (3.44)

declines as t increases. Writing P..(t) as the probability that by time ¢ the
gene-type A has become extinct, and denoting the probability that A has
become fixed by Pg,(t), conservation of probability gives

1
f;xt(t)+Pﬁx(t)+jK(x,t;xo,to) dx=1 . (3.45)
0

Moreover,

jK(O,t ! xO,tO) dt

Pext(t) — t(;

Py (1) _[K(l,t : xO,tO)dt
o

-

(3.46)
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For any specified path the functional given by (3.43), I[6(¢)] say, can be
evaluated. Then K(8, t; 6,, t,) can be obtained from

0
K(6.156,.1,)= ef 1[6(1)] 20 (¢) (3.47)
0

through quadratures performed at times intermediate between t; and t,
remembering that the weight factor Q= ./ €/N is needed, where € is
the time-step employed. Since K(6, t; 6,, t;) with x = (1 — cos8 )/2 yields
K(x, t xp, tp), three final quadratures in (3.45) to (3.47) determine
P..(t) and Pg(t), so completing the solution of the problem, since with
adequate computing facilities numbers could actually be obtained. An
alternative method of solution will be considered in the next chapter,
which for the most part is not better than (3.47) but leads analytically to
P Py in the limit ¢ — oo,

| The Solution of the Single-Ge
Problem by a Partial Differential Equa

Problems that can be dealt with by path
A integrals can also be studied by partial different
equations. Some issues are best dealt with one

way while other issues are best dealt with the

other way. The path integral method is best for
short time intervals. Both methods are intractable
in their full generality for long time intervals,
although for restricted questions, solutions are

sometimes determinable. Problems that can be
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dealt with by path integrals can also be studied by partial differential
equations. Some issues are best dealt with one way while other issues are best
dealt with the other way. The path integral method is best for short time
intervals. Both methods are intractable in their full generality for long time
intervals, although for restricted questions, solutions are sometimes
determinable. This is so in the present problem if instead of asking for a
complete determination of the finite propagator K(x, t; xo, t;) we ask for the
cumulative probabilities over the entire time range ty < t < e of the gene-type
A becoming either fixed or extinct. It turns out that this particular problem
can be solved by the partial differential equation method.

Since the work of Fisher in the 1920s it has been known that a partial
differential equation for the fluctuation of A can be obtained in a manner anal-
ogous to the derivation of the thermal diffusion equation in physics, while the
combination of fluctuations with selection yields a partial differential equation
of the so-called Fokker-Planck type. I have not found it best, however, to follow
these physical analogies, for the reason that one can all too easily be led into
uncertainty over what quantities lie under differentiation signs. Indeed, Fisher
himself fell a victim to this trouble in his early work and a similar mistake to
Fisher's is to be found to this day in the equation used by astronomers for the
diffusion of cometary orbits by the planet Jupiter, in my opinion.

The sovereign recipe for avoiding such troubles is to derive the required
partial differential equation from the infinitesimal propagator by a method
similar to that used for obtaining the Schrédinger equation in nonrelativistic
quantum mechanics. From equation (3.24) the probablility distribution is
obtained from an initially specified distribution ¢(x', t')dx' for the frequency
of the gene-type A by

1
d)(x', t')=JK(x’, t';xo,t0)¢(x0, to) dx, . (4.1)
0

Here ¢(xo, t,) is the initially specified probability function and K is the finite
propagator, used when the time difference t'- t, is not too small. Consider a
further small time-step from t' to t. Then

0 (xt)=Jk(x.t:x, ) o (¥ ) ax” (4.2)

O ey =

e
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where k(x, t; x', t') is the infinitesimal propagator given by

—\2
Nx——x’—y't—t')

o N M . (43)
kw60 0) = o) | T =)

[x’ +h(1- 2x')] . (4.4)
1+ sx'[x' +2h(1- x')]

y =sx'(1-x)

Throughout this chapter, |s| will be considered sufficiently small for (4.4)

to be approximated as

y =sx'(1-x")x" +h(l- 2x)] . (4.5)

The exponential in (4.3) is very sharp, because N >'> ‘1 and
¢t — ¢ is a small time-step. Hence x must be close to x' if k(x, t; x', t') is to l?e
appreciably different from zero, and we can expand (4.5) by a Maclaurin

series in terms of

y=sx(1—x)[x+h(1—2x)] ,

that is,
fm (X - )iy-+l(x'—x)2d—2>’-+...
Y=y )t x>
=sx(l-x)[x+h(1—2x)]+s(x’-—x)[...]+... . (4.6)
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) , " -
With |x' — x| small, it is sufficiently accurate to omit all but the first two
t terms of (4.6). Now (4.2) can be rewritten as

1
| Olxty-v)t]=[k(x+yi=r,1; X', 0) o(x, V) ax’ , (47)
0

by which device the first term on the right-hand side of (4.6) becomes

transferred from the right to the left of (4.7), and expanding the left of
(4.7) for t — ' small we have

, _nl., 99 do
00 (1-0) [y 5242 .

n2 _—‘dy 2
\/ﬁl N(x—x) (l+t-—-t'd—x) o
= ; '([exp - ¢(x’,t')

xX(1=-x)(t-1) y(1-x)(t-7)
(4.8)
It is sufficiently accurate to write
n2 P dy :
N(x-x') (1+t—t'b§)
exp | —
(=x)(=7)
[ -
N(x- x')2(1 +21- t'%)
=exp | — >
X(1-x)(t-7)
I n2 2N(x-x' 2@)‘
=exp | - ,N(x,—x) _ ( X) dx
X(1-x)(t-71) x'(1-x)
(4.9)

-
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To obtain the required partial differential equation, we have to insert (4.9)
in (4.8) and then evaluate the resulting integral with respect to x'.
Facing this task as best one can, put

x —x

= _m ’ (4.10)

changing the variable of integration from x' to z. Because of the sharpness
of the exponential in (4.9), it is sufficient to evaluate the other terms in the
integral (4.8) with |z| small, that is, in ascending powers of z. Thus

dx’

_ [1+ 1-2x
Jx'(1-x") 2/x(1-x)

z—2° +0(z3)} dz ., (411)

¥ —x=+x(1-x) z++(1-2x) 22+0(z3> . (412)

And expanding ¢(x', t') about x' = x,

’ 2 ’
¢(x',t')=¢(x,t')+(x'-x).‘9i§;—tl+%(x'-x)2"4§i—x;f—)+... (4.13)

[nserting (4.12),

¢ (x, t)=¢ (x, )+ x(—x Z%(g
x

2
+ —1—22[(1—2x)a—(p + x(l—x)a ¢]+...
2 ax

ox
(4.14)

e
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Hence, to terms of order 22, the right-hand side of (4.8) is

—N_ooex _ Nz ol — dy » 1-2x
ﬂ(t—t')_-[o ‘{ t—t'} [l ZNEZJ‘{“mZ—ﬁ

* [q)(x, )+ yx(1-x) Zaa_f‘FlZz {(1 _2x)a—(p+x(1-x)@}— dz
i

2 0¢ ox?

(4.15)

the range 0 < x' < 1 yielding the range from — oo to o for z. All the z-dependent
terms in (4.15) can be evaluated up to order 2 by using

T NZ* n(t—1)
X - —\|dz=. |——12
_L P[ t—t’} 2 N : (4.16)
TeXp _NE ] o
- t—t’ Z= s (4.17)
I _ NZ? 2 1 t—t %
*J;exp[ t_t,]z dz:E«/E( v ) . (418)

Thus the right-hand side of (4.8) is

=02 o 1)

dx
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Hence the required partial differential equation is

d 0 11 d % o9
sy = - | I x(1=-0)"—F+(1-2x)—F% -
Jt M ax(y¢) ZN[ZX(1 %) J9x* + x)ax (D}

1 02
=——[x(1—x)(p] .
4N dx (4.20)

Let us consider, first, the case where A is a neutral mutation, that is,
s =0,y = 0. The separable form

2
¢ (x,t)=F(x) exp[— %(t—to)il (4.21)

is then a solution if F(x) satisfies the ordinary differential equation
d*F dF 5
1—x)—5 +2(1-2x)— +|w =2) F=0 . )
x(1-x)—— (1=2x)— ( ) (4.22)

For w? real, (4.22) has the form of the hypergeometric equation, which in
canonical form is

2
x(l—x)cjix—g+[c—(a+b+l)x]dz§— - abF=0 . (423)

The solution F(a, b; ¢; x) of (4.23) equal to unity at x = 0 has the series form

a~bx+a(a+l)b(b+1)

Fla,b;c;x)=1+
( ) e 1-2-clc+1)x?

a(@a+D)(a+2)-b(b+1)(b+2) 3,
123 clc l)(c+2)

-

(4.24)



Mathematics -~ Evelution

Identifying coefficients between (4.22) and (4.23) and noting that
F(a, b; c; x) = F(b, g; c; x),

3
T2 \/‘ F =2 (4.25)

determines the solution of (4.20) subject to @(x, t) having the separable
form (4.21).

When w? is a member of the sequence n(n + 1), n = 1, 2, ... , the
solution takes the form F(1 —n, 2 + n; 2; x) for which the series (4.24) can
be seen to terminate. The series becomes a polynomial in x of degree x- 1.
The essential point of the above analysis now emerges, for the polynomials
F(1-n,2+n;2;x),n=1,2,...,area complete set. Hence the most general
solution of (4.20) can be expanded in terms of them,

t)=iﬁn F(l1-n,2+n;2; x) exp[— _n(n-i—ﬁzv(tio)} ., (4.26)
n=1

where 8, n = 1, 2, ... are constants to be determined from the initially
specified form of @, @(x, t). If, for example, the gene frequency has a
uniquely specified value x; at time t,,

‘/’(x’ to)=5(x‘xo) , (4.27)

where §(x - x;) is the Dirac delta function and the S, are to be obtained from
2B F(l-n24n;2;x)=56(x-x)) .  (428)
n=1

The polynomials F(1 —n, 2 + n; 2; x) have the further useful property of
being orthogonal with respect to x(1 — x) as weight factor,

e
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F(l-m2+m;2; x)F(1-n2+n;2; x) x(1—x)dx

O ey

1
- n(n+1)(2n+1)

ifm=n

0 ifm#n

(4.29)

To determine fB, in the case (4.27) multiply (4.28) by x(1 - x)
F(1 - m, 2 +m; 2; x) and integrate with respect to x from O to 1. All terms

give zero on the left except n = m because of (4.29) and

1
mim m 0

=x0(1—x0)F(1—m,2+m;2;x0) , m=12,..
(4.30)

Substituting for the coefficients 8 from (4.30) into (4.26) solves the problem
of the behavior of a neutral mutation having a definite frequency xo at t = t.
Thus the finite propagator K(x, t; X, to) is given in the neutral case by

K(xt Xy, t ) Zxo(l xo) n(n+1)(2n+1) F(l n2+n;2; xo)

n(n+l)(t—t0)} |

o F(l-n,2+n;2; x)exp{— N

(4.31)

a result stated by Kimura in his book The Neutral Theory of Molecular
Evolution (Cambridge, 1984).

-
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For consistency, (4.31) must tend to the infinitesimal propagator as
t = to. When s = 0, y = 0, the latter is

k(x, t; Xgs to)

_ N exo| — N(x—xo)2
\/ﬂxo(l—xo)(’_%) ’ xO(l“xo)(’_’o>

(4.32)
Possibly there is some elegant way to show that as t — t,
xo(l—xo)iln(n+l)(2n+l) F(l—n,2+n;2;x0) .
ne
Fllon 24m: 2 ) n(n+1)(t—t0)
(1-n,2+n; 2; x) exp —
N N(x——x )
- _ 0
\/mo(l_xo)(t_to) N N x)-0)|
(4.33)

but if so, | have not been able to find it. I will spare the reader the acute
misery [ encountered in trying to prove (4.33), giving only a sketch of my
calculation, which did indeed arrive at its goal in the bitter end. The trouble
is that the series on the left-hand side of (4.33) is dominated at small ¢t — t
by many terms at large values of n. One must start therefore, it seemed to me,
by finding an asymptotic form for the hypergeometric polynomials. Those
mathematical vade mecums with which modern publishers seek to ease the
life of the younger generation proved to be silent on this matter. However,

there are relations between the hypergeometric polynomials and other
systems of orthogonal polynomials, in particular

e
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2 d
n(n+1) d(1-2x)

F(l-n,2+n;2;x)= [R(1-2x)] , (434)

where P (1 — 2x) is the Legendre polynomial P,(cosB) with cos@ = 1 — 2x.
A toehold could then be gained from a known asymptotic form for the
Legendre polynomials,

P,(cos 8) = ;—n%l—a sin[(n +1)0 + %] . (435)

Now put (4.35) in (4.34) and substitute the resulting expressions for
F(1-n,2+m;2;x) and F(1 —n, 2 +n; 2; xo) in (4.33), and then proceed to
the not-so-exquisite problem of summing the resulting series. The outcome,
after an unattractive trigonometrical reduction followed by replacing the
series by an integral, was indeed the right-hand side of (4.33), which at least
convinced me that in mathematics there is justice, if rough, and this is more
than you can say for most of the other activities of humankind.

This experience made me wonder just how useful the result (4.3 1) really
is. It is the convention in mathematics for any problem that can be expressed
in terms of known functions like the hypergeometric functions to be regarded
as solved. As long as a procedure can be specified whereby any question about
the problem one cares to ask could in principle be answered, the problem is
“solved,” regardless of whether in practice the procedure really could be
carried out. Some logicians have questioned such a style of argument,
especially where critical mathematical proofs are concerned, as for instance
where the so-called axiom of choice is concerned. My own view of this old
controversy is that one has to distinguish sharply between procedures that
really could be pushed through if sufficient trouble were taken by a sufficient
number of people, and imagined procedures which really could not be carried
out no matter how much human effort were expended. The latter I would
regard as dubious, the former as permissible. There is no doubt that the
present problem of determining K(x, ; xo, to) falls into the permissible class.
Given X, t;, numerical values for K(x, t; xp, t,) at specified x, t could in
practice be found if one were sufficiently determined about it. How
determined would one have to be!

-
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The saving grace of the solution (4.31) is that the exponential factors
expl—n(n + 1)(t — t,) / 4N] produce rapid convergence for time differences
t — to of order N. Moreover, the series expansions for F(1 —n, 2 + n; 2; x) and
for F(1 —n, 2 + n; 2; x;) terminate quickly for low values of n. Thus for large
time differences (4.31) could be made to yield explicit numbers for the finite
propagator K(x, t; xo, to). On the other hand, for small time differences the
series expansion (4.31) is impractical for the reasons already discussed
above—the convergence is atrociously slow. But for small time differences we
have the path integral method discussed in the previous chapter. Indeed, for

t — ty small enough we already have a simple formula for the propagator, the
infinitesimal propagator

K(x, t; Xy, to):k(x, ti Xy t0)=

\/ h CXp| — N(x - yO:t-O)z
ﬂxo(l—xo)(t—to) xo(l—xo)(t—to)

(4.36)

As t — ty increases it becomes necessary to have more and more steps in the
path integral, which is the way r increases in the expression

1 1,1
K(xr, trs Xg t0)=‘(’; ...‘([I];!)k(xp_’_l, tp+1; Xp, tp) dx1 dxr_l

k(xp+1’ tp+1; Xp tp)

_ N exp| - N("p+1“’“19‘3’17Jﬂz;+1"p)2
7 xp(L=xp)t g ~1p) xp(L=xp)t 1 ~1p)
yp=sxp(1=%,) [, +h(1-25,)] . bl<<1
(4.37)
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For t. — t, of order N it would typically be necessary to perform about a
hundred quadratures in order to obtain K(x;, t; xo, to) for specified x,, t,. With
a modern high-speed computer such a computation would not be out of the
question, but of course the series expansion (4.31) is much preferable to the
path integral for large t — to. This is provided the selection factor s is zero,
provided the mutation under discussion is neutral. When s # 0 the
arithmetical labour of using the path integral method is scarcely affected,
whereas attempts to obtain a series expansion similar to (4.31) appear
doomed to failure. With the d(y¢)/dx term in (4.20) included, my attempts
to find a general solution failed. Nor could I find anything useful in well-
known books on special functions. Yet remarkably enough, although (4.20)
was not helpful for the general purpose of determining K(x, t xp to)
analytically, the partial differential equation provides the solution to a
problem, which although limited in scope, is nevertheless important. This is
the problem of determining the cumulative probability of the gene A
becoming fixed (x = 1) and of it becoming extinct (x = 0), cumulative over
the whole time interval from x = xgatt =ty to t — ee.

Writing out (4.20) in full,

J 1 9?2 0
—a—(:z4—]68—)6—2—[x(1—x)¢]——s§;[x(l—x){x+h(1—2x)}¢] . (438)
whence

1

1
%W dx:ﬁ{%{x(l—x)(])}—sx(l“x){x"'h(l‘zx)} 4
0

0

1
= - Zﬁ{(p (x=0,1)+¢(x=1, )} . (4.39)

The lefe-hand side of (4.39) is the rate of increase of the total probability of
the gene frequency lying between 0 and 1. The increase being negative, the
probability of the gene frequency lying in the open interval (0, 1) decreases,
and it does so through what can be called an outflow of probability, an
outflow at x = O representing the probability per unit time that the gene

—fl-
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becomes extinct, and an outflow at x = 1 representing the probability per unit
time that the gene becomes fixed. These are the two terms on the right-hand
side of (4.39). The cumulative probability of fixing A is therefore

fgb P, say, (4.42)
and the cumulative probability of A becoming extinct is, say,
—[p(x=0,1)dt=P, say . (4.43)

Although the partial differential equation (4.38) is intractable for deter-
mining K(x, t; xo, to) when s # O, it turns out that the less ambitious problem
of determining Py, and P,,, can indeed be solved.

Provided the special and unusual cases of balanced polymorphisms that
were mentioned in Chapter 3 are excluded, the gene-type A eventually
becomes either extinct or fixed, so that

For + P =1 (4.44)
That is to say,
¢(x,t)>0 , oo (4.45)

for all x in the open interval (0, 1). Note also that ¢(x = 0, t) and ¢(x = 1, t)
in (4.41) are defined by continuity from (0, 1) to its end points, a situation
that is common for partial differential equations (c.f., Methods of
Mathematical Physics, section 10, page 324, R. Courant and D. Hilbert, New
York: Interscience, 1953). Hence at any x in (0, 1) we have

e
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]"_M(gj’f) di = —¢(x )= —8(x=x) . (4.46)

-
o

it being supposed that at time t, the gene frequency is known to be xo, as for
example x, = 1/2N when a mutation occurs. From (4.38) we have

j9¢§’;t) 4NF x(l— x)_[d)(xt)dt
t()

—s— x(1—x){x+h(1- 2x)}j¢(x t)dt | .

0
(4.47)
Defining
p(x)=[¢(x.1)dt (4.48)
f
we therefore have
-6 (x—x )= —l—iz——[x(l—x),u]—si[x(l— x){x +h(1—2x)}u]
0)" 4N dx? dx
(4.49)
Comparing (4.42), (4.43), and (4.48), we see that
p =L ~1), Po=—u(x=0) (4.50)
=gyt =D T = gh |

—H-
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Hence the problem of obtaining Py, and P, reduces to the problem of
solving the ordinary differential equation (4.49).

Except at x = x;, the left-hand side of (4.49) is zero, and the equation
with zero on the left-hand side has an immediate first integral

di[x(l—x),u]— 4Nsx(l-x)[x+h(1-2x)|u = Constant.  (4.51)
x

A solution for u(x) satisfying (4.51) holds in both the open intervals (0, x,)
and (xg, 1), but with different constants on the right-hand side, because of
the delta function in (4.49) which requires du/dx to be a step function across
x = %y On the other hand, u(x) is continuous across x = xo. Let C be the
constant for (0, x;) and C' the constant for (xy, 1). The equation

dii[x(l—x)u]—4Nsx(1-x)[x+h(1—2x)]u =C (452)

for (0, xo) has exp[— 2ZNs{x? + 2h(x — x*)}] as an integrating factor, whence
x(1-x) exp[ - 2Ns{x2 + 2h(x - xz)}] u(x)

= CJ:.exp [— 2Ns{z2 + 2h(z - 22)}] dz

=Cf(x,0) say, 0<x<x, - (4.53)

Similarly,

AV UUIUVAUE V1 URV JINMZIV VUMY & RURIVIIL 7y 58 R SR URRE J7RELUE LARTRmA s

x(1—x) exp[—ZNs{x2 + 2h(x —x2 ) } ] w(x)

_ c'i eXp[—st{z2 +2h(z— zz)}] dz

=Cf(1, x) say, xy<x<l1
Continuing f(x) at x = x requires
Cf (x5.0) = C" (1 x,)

Integration of (4.49) from x; — € to xp + € fore <<1 also gives

1— — - | — = s
NXO( xo){(dx X=x0+6 dx x:xo—e

which from (4.53) and (4.54) requires C and C' to satisfy

C+C =4N

From (4.55) and (4.57),

co 4N - 4N
- 1+f(x0,0)/f(1, %) 1+ £(1, xo)/f(xo,O)

Now from (4.53)

ux)—»C as x—>0

and from (4.54)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)
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“x)=>C"  as x—>1 . (4.60)

From (4.50), (4.58), (4.59), and (4.60), the required probabilities Py, and

P, are determined by

p - 1)
fix f(xo,o) T f(l, xo) s (4.61)
_ £(1 x,)
ext f(xo,0)+f(l, xo) ) (4.62)
where
*0 ;
f(x0,0)= fexp[—2Ns{x2+2h(x—x2)} dx
0 “ (4.63)
1
f(l,x0)= J.exp[—2Ns{x2+2h(x——x2)}-dx .
*0 (4.64)

All :that remains of our problem is to evaluate (4.63) and (4.64) for various
f:hOlCCS of s and h. As far as the selection factor s is concerned, we are
interested in both s > 0 and s < 0, and in both 2N |s] << 1 and 2N [s| >> 1.

Tl';e case 2N [s| << 1 is easily dealt with. This is the case of an effectively
neutral mutation, with f(xo, 0) = xy = /2N and (1, x)) =1 = x, = 1 — 12N
From (4.61), (4.62) xO xO .

_ 1
B, = f(x,,0) N

_ _ 1
T (4.65)

which are well-known results also derivable, awkwardly in my experience,
from the series (4.31) and more easily by an argument given by the writer
together with Professor Chandra Wickramasinghe in the lecture note reprint
Why Neo-Darwinism Does Not Work (University College Cardiff Press, 1982).

The integrals (4.63) and (4.64) can be evaluated immediately for the

case h =12, which is to say,

*0
f (xO,O) = '([exp(—2st) dz = 5}%;[1 —exp (—2Nsx0 )] ,

1
f (1, xo) = J.exp (-2Nsz)dz = El\jg[exp (—2Nsx0) —exp (—2Ns)] ,

o
(4.66)
giving
- 1- exp(—ZNsxO) (4.67)
fix = 1 _exp(—2Ns)
_exp (—2Nsx0) —exp(—2Ns) (4.68)

ext 1-exp(—2Ns)
For 2N |s| >> 1, an advantageous mutation with s > 0, xo = 1/2N, gives

P. = 1- exp(-s) = s ,

fix

P .= exp(-s) = 1-s5 , s<<1 . (4.69)

ext

For s < 0, on the other hand,
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P, = |s|exp(-2N]s|) =

in

Fxe= I=-F= 1. (4.70)

The theory only does in part what according to neo-Darwinian concepts it is
supposed to do—deleterious mutations with 2N |s| >> 1 are prevented from
becoming fixed. But the theory does not add up “all that is good,” it adds only a
fraction s of advantageous mutations, so that for 0 < s << 1 the fraction is small.
The situation for other values of the parameter h is qualitatively the
same. In all cases with x; = 1/2N << 1, 2N |s| >> 1, |s] << 1, we have

ONpi[#* +2n(x- )| << 1 for x<xy L @7D)
so that
f(x0,0)=ifexp[—2Ns{x2 +2h(x—x2)}]dx5 X, =£—V— . (472)

f(l, xo) = jexp[—ZNs{xz +2h(x—x2)}]dx

EieXp[—ZNs{xz +2h(x—x2)}]dx > £(0.x))  (4.13)

Hence

1 £(x,0) 1
P. = = = , .
) 7000 ) T 2o 4

-

1Y DUIULIVIL U1 LIY DINZIU-UCHE T1UNIvm vy a 1o Lial Vilivlviiviae nquuvivic
and the situation reduces to the evaluation of
1 2 2
£(1,0)=[exp[-2Ns{x + 2h(x —x Mo o @)
0

since of course P, = 1 — Py, is obtained immediately and Py, is determined.
For the case h = 0,5 >0, 2Ns >> 1,

£(1,0) =:’;exp(—2Nsx ) = Iexp( —2Nsx ) 8—7er_s (4.76)
For the case h=0,s < 0, 2N |s] >> 1,
£(1,0) = JL exp (2N ls|x2) dx
0
= iexp (2N|s|x2) xdx = 4]17|S| exp(2N]s]) .47
Forthecase h=1,5 >0, 2Ns >> 1,
f£(1,0)= j exp [2NS (x2 - 2x)] dx
0
= exp (—2Ns)_1|. exp[2Ns (x— 1)2] dx
0
= exp (—2Ns)j exp [2Ns zz] dz
0
= exp(—ZNs)i exp[2st2] zdz = ﬁ (4.78)

—f
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For the case h = 1,s < 0, 2N |s| >> 1,

f(1,0)= exp(2Ns) exp(—2N|s|z2)dz

n

exp(2Nls]) | exp (—2N |s|z2) dz

O— § O

T
= Spvb|eXP(2PVbD : (4.79)

Inserting (4.76) to (4.79) in (4.74) gives Py, for the respective cases, which it
will be useful to collect into a table by way of completing the present chapter.

Table 4.1  Probabilities of Fixing and of the Extinction
of a Mutant Gene (2N [s| >> 1)

, §>0 2s 1-2s

1
=1 s<0 2lsl/z N exp(-2N]s|) | 1-+/2ls|/7 N exp (-2M]s])

Case Py Pex
h=0, s>0 25/t N 1-.2s/xN
h=0, s <0 | 2|sjexp(-2Nls|) |1-2|s|exp(—2Nls)
h=%, s>0 s 1-=
h=1, s<0 lslexp (—2N]s|) | 1-1s| exp (—2Ns])
h
h

Cases of balanced polymorphisms in which a gene neither fixes nor
becomes extinct are excluded here. From Chapter 3, these are cases with
s >0, h >1, or alternatively, s < 0, h < 0.

~ Sociological Gonsequences
Deleterious Mutation Press

Deleterious mutations with Is|] << 1 were
shown in the single parent-to-offspring of
Chapter 1 to have two unwelcome
consequences, both of which also arise in the

sexual model studied in the last three chapters.

One is that the fitness is reduced by a factor
exp —A for a whole species below that of an
initially homogeneous population, where 4 is the

average number of mutations occurring per
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individual per generation. The other is to produce a slow erosion of a species
from the initial standard of reference, at a rate that is dependent on the
population N. For N > 10° the rate is slower than in the single parent-to-
offspring model, but for small populations, erosion is critical. In the first part
of this chapter I will establish these results mathematically, and then in the
second half I will discuss certain of their consequences explicitly for human
populations.

A major fraction of deleterious mutations involve the cancellation of a
positive property of some gene rather than in causing some entirely new
property of devastating consequence to arise. The protein to which the
mutated gene gives expression becomes a dud; it sits around doing nothing
useful instead of actively fulfilling it proper function. In such a situation there
will be no bad effect provided the dud protein is shouldered aside, and so long
as the corresponding gene on the alternative set of chromosomes is in
working order, and provided the supply of the correct protein from the
working gene is as much as is needed. For such a deleterious mutation A, the
heterozygotes in the population possessing only one A feel no ill effect from
it, because the bad A is shielded by the good a. It is only the unfortunate
members of the population who happen to have A on both chromosome sets
that feel its ill effect. Such a situation is represented by the case s <0, h = 0,
which I consider first. We can contemplate that [s| in such a situation might
be quite large, even of order unity, because if an essential protein were
knocked out on both chromosome sets, the consequences could be seriously
debilitating, perhaps even lethal. Since the analysis to this stage has been
only for |s| << 1, however, it will be convenient to keep |s| << 1 for the
moment, returning to the possibility |s| = 1 at a later stage of the discussion.

Let ¢(x, t)dx be the probability that the frequency of A lies between x and
x + dx at time t. The chance of an individual at random being of the
unfortunate homozygous type (A, A) is

1
[0 (x,0)ax (5.1)
0

the population being sampled at time t. With many possible deleterious
mutations A, all taken to have the same adverse selective factor s < O,
occurring at a rate A per single set of chromosomes per generation (i.e., per
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gamete) the total number of mutations arising over a long time interval of
T generations in a fixed population of N individuals is 2ANT. An individual
born within the interval has a chance given by the time average of (5.1) of
being homozygous with respect to any one of the 2ANT mutations,

1

%szdx Igl) (x,1)dt , (5.2)
0

the time integral in (5.2) being over the whole interval T, which is to say
from the moment of occurrence of a mutation to the moment of its extinc-
tion. This time integral is just the function that in the previous chapter was

called p(x), so that (5.2) is

1] )
}—_([,u(x)x dx . (5.3)

This is the chance of the individual in question possessing any one of the
2ANT mutations in homozygous form. Hence the number of mutations with
respect to which the individual incurs a selective penalty is given by
multiplying (5.3) by 2ANT, viz.

1
2 Nfu(x)Pds (5.4)
0

independent of T. Since mutations are injected at x = xo = 1/2N, which is very
small for N large enough, the part of (5.4) for 0 < x < x, is negligible. Hence
to evaluate (5.4) we require the form of ti(x) obtained in the previous chapter
for x, < x < 1. For the present case h = 0, this was

4N f(x,,0 L
w(x)= e x)(f(()l, J)CO) exp(ZNs x2)3[ exp(—2Ns 22) dz , (55)

to sufficient accuracy, where

-
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*0

f(xo, 0): ‘([ exp(—ZNsxz)dx = X, 231N— s (5.6)
1

F(L xp)= [exp(-2Nsx*)ax . (5.7)
*0

For s < 0 we therefore have

1
2exp (—2N |s|x2) I exp (2N|S|Z2) dz

Hlx) = x(1-x) *

X

1

J.exp(ZN]s|z2) dz

%0 (5.8)

Counting in the mutation rate A only those miscopyings for which
2N |s| >> 1, p(x) is negligible unless x << 1, in which case the ratio of the
integrals in (5.8) is very close to unity and p(x) is therefore given to
sufficient accuracy by

:2 — 2
w(x) xexp( 2N|s|x ) : (5.9)

Inserting (5.9) in (5.4) gives a simple result for the average number of
homozygous deleterious mutations possessed on the average by an individual,

1
42,NJ.exp(—2N]s|x2)xdx = %—I , (5.10)
3 s

whence the selection penalty incurred by the individual is

(1-1s]) A = exp A, s <<1 ) (5.11)
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the same as in the single parent-to-offspring model of Chapter 1, Haldane’s
result of many years ago.

A dud gene product could in some cases be harmful, either directly so or
because a single working gene in heterozygotes might not yield sufficient of a
needed product. The corresponding analysis for such a “dominant” situation
with h 2 0 follows the same lines as the recessive situation just considered, but
with differences of detail. With x << 1 as before, the fraction 2x(1 — x) of
individuals that are heterozygous with respect to a particular mutation is much
larger than the homozygous fraction x*. Hence a particular individual is
heterozygous with respect to many more deleterious mutations than it is
homozygous, and therefore for h not close to zero the main selective penalty
comes from the heterozygous mutations for which (5.1) is replaced by

1 1
2J.¢(x, )x(1-x)dx = 2J¢(x, 1) xdx , (5.12)
0 0
and (5.4) becomes
1
4AN[p(x)xdx (5.13)
0

where the appropriate expression for £i(x) is now

2 exp[— 2Npl{x? +2h(x - xz)}]

1 (x) T(0=2)
j‘exp[2N|s|{z2 + 2h<z— 22)}] dz
'lfe,xp[2N|s|{z2 +2h(z - zz)}] dz
0 (5.14)
o—Rg——o
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Once again, the relevant values of x in equation (5.13) are small, because of
the exp[-2N |s[{x? + Zh(x — x2)}] factor in (5.14), and for x small the ratio of
the integrals in (5.14) is essentially unity, giving

2 exp[—Zle]{x2 +2h(x——x2)}]
x(1-x)

n(x)=

n

2
= exp(—4N|s|hx) . (5.15)

Inserting (5.15) in (5.13) again yields a simple resul,

27

1
8A N[exp(—4N|sihx)dx="" | (5.16)
0 hls]

whence, compared to the original population the selective penalty incurred
by an individual is

201 Hs
(1=ns)™"™ = exp(-24) , |sl<<l . (517

Except that the mutation rate is now for both chromosome sets, 24, the
outcome is the same as before.

The form (5.9) for u(x) shows that in the recessive case h = 0 deleterious
mutations do not penetrate significantly beyond x = X, with X given by

=2
2Nls|x“ =1 , (5.18)
while (5.15) shows that in the dominant case h # O penetration cannot

proceed significantly beyond x = X, with X given by

@, C
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ANh|s|x =1 : (5.19)

The exponential factors cut off sharply for x > X. The explicit path x(t)
followed by a particular mutation starts at x = xo = 1/2N, t = t. Due to
stochastic effects the path wanders around for a number of generations
without x exceeding ~%, until eventually at some time ¢, x(t) = 0 and the
mutation is then extinct. We can ask how large the time difference t — t; can
be before extinction occurs, the largest time differences occurring for
mutations where stochastic fluctuations happen to increase x to order X.

In the majority of cases where deleterious mutations become extinct
without x increasing to order X their behaviour is controlled by stochastics
not by selection, with the probability of going in a generation from frequency
x to a frequency in the range x' to x' + dx' given by the infinitesimal

N B N(x" - x)2 ,
0= exp| — — - ) dx , (5.20)

which for x << 1 can be written to sufficient accuracy as

’ 2
(N | - M= (5.21)
TX X

propagator

Defining Ax by

x+jMeXp|:— N(x'—x)2 = OJ?

X X x+Ax

2
N(x" -
exp{— ___(x x) dx’ (5.22)

which gives
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, that is, (5.23)

N | —

1 | x
Ax=0485 % = = | X 5.2
v X , (5.24)

we can say that the gene frequency shifts in a generation from x to either
x + Ax or to x — Ax with equal probability /2.

The situation is like a one-dimensional diffusion problem with mean free
path Ax that depends on the square root of the diffusion distance x. As in all
diffusion problems, the number of steps, that is, generations, required for the
diffusion distance to change from x to either zero or 2x is

~i2~4N 5.25
Ax - * ' 62)

Hence the circulation time of a deleterious mutation is of the order of 4N
times the largest frequency reached along the path x(t) which the mutation
happens to follow. The largest x that can happen because of adverse selection
is ~x with X given by (5.18) or (5.19) according to the value of h. The
maximum circulation times in generations are therefore

8N if h=0,

E if hisnotsmall.  (5.26)

hls

For 8N = 105, [s| = 10, the maximum circulation time is ~10* generations
for recessive mutations, but only ~10? generations for dominant mutations.
Except in small population groups, recessives circulate much more slowly
than dominants.

A complacent attitude to the expression exp —A for h = 0, or exp —2A for
h#0, in the fitness of a species would be to say that the standard with respect
to which these factors have been calculated is that of an initially pure line
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population, and that no actual test of fitness can arise because by the time
defects have arisen, the initial population no longer exists. Provided the
deleterious mutations have |s| << 1 this is largely true. Every individual after
a time interval of order (5.26) has either A /|s| recessive defects or 24 /|s|

dominant defects, with selection only bearing down on fluctuations in these
numbers, fluctuations which are of order (4 /|s] )2, For |s| = 0.01, A =03,
(A /|s])" = 5 and (1 - |s|)° = 0.95, so that selective penalties on the less
fortunate of the community are only about 5 percent. It is this selective
penalty that prevents continuing mutations from making the situation
progressively worse. This is for mutations that satisfy 2N |s| >> 1, which was
assumed throughout the above discussion. The complacent view is that such
penalties are not very onerous on the disadvantaged. If the most speedy
humans can run a mile in 4 minutes, to be 5 percent worse at 4 minutes
10 seconds should not be too much of a handicap to bear. And to have a
5 percent less chance than the average of leaving surviving descendants
would not be felt a grievous burden by most humans either. But there is
another darker side to the matter implied in the mathematics.

The frequent mutations that must render genes seriously defective, while
possibly carrying little penalty in heterozygotes, are likely for important genes
to impose a grave penalty on homozygous individuals having both genes
defective on both chromosome sets. With such a situation lethal or near
lethal, especially for creatures in the wild without the technological support
which humans enjoy nowadays, s = —1. The average number of such seriously
Jeleterious defects would still be A /|s| per individual, with A as their rate of
occurrence per gamete. If A continued to be ~0.3 we would thus have about
one individual in three afflicted by an essentially lethal genetic defect. In
such a situation the entire load of maintaining the genetic integrity of the
species falls on the unfortunate one individual in three, a situation that in
the human case at least cannot be contemplated lightly.

All the work of Chapter 4, on which the derivation of (5.10) depended,
appeared at first sight to be based on |s| <<'1, so that we have to reexamine
the premises of Chapter 4 before accepting the implications just mentioned.
Reference back will show that three approximations involving

_ x(l-x)[x+h(1-2x)]
y=9 1+sx[x+2h(1——x)] (5.20)
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were made. The first was to replace the denominator of (5.27) by unity. For
deleterious mutations with x << 1 this evidently does not require |s| << 1,
so that for deleterious mutations this first approximation does not place any
restrictive condition on |s|. In expanding the left-hand side of (4.7) by a
Taylor series a term 2(t — t')? y2 P @lox? was neglected. This is justified
because for h = 0, y = sx? and so for x << 1 the term is small irrespective of
|s|. For advantageous mutations with x of order unity it would be otherwise.
For advantageous mutations s << 1 it is necessary to justify the former
approximations.

The same situation arises for the third approximation, which occurred in
passing from (4.8) to (4.9), when the (dy/dx)? term in (1 +f—t"dy/dx)’ was
neglected. For y = sx?, this (dy/dx)? term is of second order in x, and so for
x << 1 the neglect is again justified. Just the same neglect of a (dy/dx)? term
occurred in (4.9), in the expansion

_ 2N(x~- x’)2 5 2N(x- x’)2 dy

exp - y =1 - ———— = =
x'(1-x") x’(1-x") dx ¥ (5-28)

which also turned on |dy/dx| << 1. The circumstance that (5.28) was
multiplied in (4.9) by exp -N(x — x")? / x'(1 — x")(t — t')] prevented values of
x' in (5.28) being relevant unless

N(x- x')2 ,
— = < t—t : (5.29)
x'(1-x")
Since t ~ t' was a generation or at most a few generations, equation (5.29)
requires N(x — x")? / x'(1 — x') to be not large compared to unity, whence,
provided |dy/dx| << 1, the second-order term in (5.28) can be neglected.
Hence, for deleterious mutations whose frequencies necessarily remain
small compared to unity, all the work that led to the partial differential
equation (4.20) continues to hold good for [s| = 1, and hence the somewhat
grim aspects mentioned above cannot be avoided on mathematical grounds.
Besides which, our deductions to this point have a considerable ring of truth
about them. Trials of strength and games of skill turn on remarkably small
advantages, showing that our deduction of a 5 percent swing about the
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average, contingent on fluctuations in the number of defects with |s| <<'1
from one individual to another, is not at all far short of the mark. So too,
unfortunately, do examples of the birth of seriously disadvantaged individuals
with |s| = 1 spring easily to mind. A proportion of one in three such cases is
too high for modern human society, but in the much harsher conditions of
prehistoric humans it probably would not be too far short of the mark either.
The time scale (5.26) for the onset of the lethal mutations for the relevant
case h = 0 is only ~(8N)"2 when |s| = 1. For an inbred village of 200 adults,
(8N)": = 40 generations. If nonsurviving juveniles under primitive
conditions were included, the total population of such a village might be four
to five hundred persons. A generation interval is not the time for which
individuals live but the time from birth to reproductive age, which for
humans could be as short as 15 to 20 years, so that 40 generations implies a
time span of 600 to 800 years. This, it will be recalled, was a maximum
estimate, made for the deleterious mutation of longest circulation. For
deleterious mutations on the average, a circulation time about a half to a
third of (8N)"2 would be appropriate, say two to three centuries for our
village. Starting from an entirely healthy situation with no lethal recessives,
a bad situation affecting up to one offspring in three would arise in
substantially less than a millennium.

We are now in a position to make two interesting deductions and to offer
a number of sociological observations. Defects observed among the
populations of inbred villages are as much likely to be mental as physical, as
the terms “village idiot” and “country bumpkin” imply. From this we could
deduce that as many genes must be employed in the action of the brain as in
promoting the more physical properties of the body, a deduction which in
recent years has been shown to be true. The second important point which
can be made is that not all mammalian DNA could possibly be utilized in the
production of working proteins. If it was, A would ~10 and the genetic load
exp —A would be impossibly heavy. It is a probably correct speculation that
the amount of expressed DNA is as large as it can be without deleterious
mutations becoming impossibly destructive.

There is a strategy which populations can adopt for dealing with the
difficulties discussed above. Divide a total population with N = 106, say, into
subgroups each with N = 100 and restrict mating to individuals within the
same subgroup. The effect is greatly to speed up the circulation of deleterious
mutations. Instead of circulating in a time scale of 1000 generations for
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N = 10, circulation in each subgroup occurs in only ~10 to 20 generations.
Even for such a long-lived species as ourselves, all correlation between the
serious deleterious recessives circulating in our subgroup and those
circulating in another will be gone after only a few centuries—the recessives
will be different in different subgroups. Now mix the subgroups, ensuring that
individuals from the same subgroup do not mate together. All progeny will
then be heterozygous for the recessives and no lethal cases will occur. This
happy situation will persist for up to ~1000 generations when it will be
necessary once again to fragment the larger population into small subgroups.
At the expense of ~10 generations of bad genetics, ~1000 generations of good
genetics, if forthcoming, is an immense gain.

Everything so far in this chapter has been for mutations with selective
factors such that 2N |s| >> 1. Reference to Table 4.1 shows that minor
mutations with 2N |s| < 1 have a probability of penetrating a species not
much different from 1/2N, the probability for penetration by a neutral
mutation. Write & for the rate per generation per chromosome set at which
mutations with 2N|s| < 1 arise. Then the total number occurring per
generation in the whole population is 2N¢, of which ~£ become fixed. Hence
in G generations ~6G such mutations become fixed, so that the species
acquires a steadily growing penalty

(1-ls)°¢ = (1 - lfG = exp [— g—G] . (530)

2N 2N

the mutations for which & is determined having 2N |s| = 1. If similarly to A
we rate & = 0.3, then for a population of 5 « 10° individuals there is a
significant decline in G = 2N/€ ~ 3 « 10° generations, which for a typical
mammalian species is about 107 years, significantly less than major
evolutionary time scales of several hundred million years. Hence if £ is as
high as 0.3, species with population numbers not exceeding 10° must either
collapse on such time scales due to a persistent erosion of their genetic
material, or new uneroded genetic material must be acquired in some way. In
relation to the discussion of the next two chapters, the latter is an interesting
possibility. It would explain why so much of DNA goes unused. Unexpressed
DNA could be old eroded genetic material that has been discarded as new
material has been acquired. The excess of unused over used DNA, a ratio of
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perhaps 20 to 30 to 1, would then be a measure of the antiquity of the
evolutionary process itself, the latter being ~20 » 2N/, a hundred million
generations for 2N = 106, £=0.3.

Returning to much shorter time scales, humans need no encouragement
at all to form themselves into small inbred groups. All our instincts seem
directed toward producing an immense fragmentation of the total human
population. The typical size of inbred groups, whether the hunting groups of
Neolithic humans, the medieval village, the more modern tribe or clan, or
an aristocracy, is about 500 persons. So too are scientific academies and
houses of parliament. Given half a chance this is what human psychology
always seems to favour—a situation that is clubbable. Allowing for juveniles
who do not survive to maturity, early groups with totals of about 500 would
have had an effective value of N around 200. So long as man’s penchant for
subdivision was supported by adequate geographical separations, well and
good, nothing very violent could happen. But artificial subdivision due to
tribal structure, or as in medieval times due to political fiat, must sooner or
later become explosively unstable, as soon as some perturbation of society
causes several contiguous subgroups to intermingle. Instability arises because
the progeny of parents from different subgroups would be free of homozygous
debilitating recessives, since the adverse mutations possessed by one parent
would mostly if not wholly be different from those of the other parent. The
outcome would be a generation of far more competitive individuals, with the
likelihood that geographical expansion would take place, sucking in more
and more subgroups into the mixing pot, thereby generating a kind of
detonation wave that would exhaust itself only when impassable
geographical boundaries were reached.

Many examples come to mind, of which the almost instantaneous break
up of medieval Europe at the end of the fifteenth century is excellently
documented. The medieval population was largely rural, with severe legal
restraints imposed against the free movement of people. The longer the
subgroups in the villages were forcibly kept apart the more unstable the
situation became, with its dénouement in Britain coming with the loss of the
French possessions and the ensuing War of the Roses. The resulting
biological explosion was that we associate nostalgically with Shakespeare
and Tudor England.

There must be few people who are not fascinated in some degree by
history. In their dedication to getting the facts of history as correct as
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possible—no easy task in view of those in all ages who attempt to muddy the
waters—historians serve a crucial function in society. Qur lives are
experienced subjectively largely as events that are past. The notion that we
live “in the present” is an illusion, for no sooner do we experience an event
than it is past already. As a mathematician might put it, the “present” has
measure zero. No wonder then that it is important to have the past as
correct as possible. Even so, in spite of the great fascination of it all, I never
had a strong impulse to study history professionally, on duty as it were,
essentially because I felt that historical studies raised a whole lot of
interesting questions which were not answered in a satisfactory way. I simply
could not believe that it all boiled down to policies formulated by the
individual rulers of communities who pop up and down throughout the
pages of history like a troupe of jack-in-a-boxes.

[ began to feel better about it when I came to interpret history in regard of
the development of technology. The march of technology seems always to
have been forward, unlike nations which flourish for a while and then decline.
But technology could not be everything. It did not explain why the Hellenistic
Greeks, who had been so dominant in the days of Alexander, came to be
subjugated a couple of centuries later by the Romans. Nor how it came about
that in the thirteenth century the Mongols were suddenly able to explode out
of Asia and sweep all opponents before them. Such convulsions fall easily into
line, however, when the biological considerations of the present chapter are
brought to bear. The Hellenistic Greeks expanded in the Mediterranean by
establishing sea-bordering colonies that did not expand much into their
hinterlands, and which therefore became largely closed communities, each
mating persistently among its own inhabitants and so incurring the genetic
penalties described above. The Romans, on the other hand, emerging from a
forcible intermingling of tribes, developed an extensive hinterland. In terms of
the cyclic process of inbreeding and outbreeding, the Greeks and Romans seem
to have been at opposite phases, the one incurring biological penalties, the
other in the expansive process of being freed from them.

[t is remarkable that our subjective preference for what seems desirable in
life and what seems disastrous should run so exactly counter to the biological
situation. Our preference is overwhelmingly for a secure life, surrounded by
friends and their families, of whom we would hardly number more than a
couple of hundred. Daughters and sons almost inevitably marry within the
club, seeking to preserve material possessions and common cultural values.
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Comfortable and cozy, in contrast to population upheavals following defeat in
war, in contrast to migrants quitting their home communities in sorrow due to
poverty or as outcasts due to nonconformity over some issue or other. Yet it is
the migrants who are traveling toward a future in which, by genetic mixing,
their progeny will come to dominate the world.

The biological problem ironically becomes more acute the higher the
social class, for the higher the class and the wealthier its members the more
they are able to indulge their antibiological preferences. Particularly
vulnerable in times gone by have been royal households. Although free to
decide their mating partners, kings and princes opted overwhelmingly for
brides who contributed possessions and influence, thereby limiting choices to
an in-group typically of the order of a hundred, and so with mathematical
certainty ensuring degradation on a time scale of a century or two. There
have been exceptions with notable results, as with Robert of Normandy’s
infatuation for Herleva the burgher’s daughter, from which frowned-on
liaison came William the Conqueror. William himself did not perceive the
biological lesson, however, and within a century the line of his immediate
descendants ran out. Thereafter the Plantagenet house had a comparatively
long run for its genes, from the mid-twelfth century to the death of Richard
III in 1465. The Tudors then managed a century and a half, the Stuarts a
century, time spans inevitably dictated by our formula (5.26).

Modern populations are so large, with N usually exceeding 107 and
sometimes even 108, that one might think populations today must inevitably
be living in a favourable period of almost total outbreeding. Yet those
populations with histories of immigrant flows like Australia and the United
States, and those which recently have been greatly stirred in the aftermath of
war like Germany and Japan, are performing so well in comparison with less
mixed populations like the British that I have to suspect that some of the
genetic effects of inbreeding still linger on in the world’s more static
populations. A glance at traffic flows on British motorways does not suggest a
static situation of course, but the immense difficulty which the British have in
changing houses between one place and another suggests a population that is
still rather rigidly rooted in its homes, its classes, its manners of speech, and its
clubs and pubs. The British population is certainly not inbred in anything like
a medieval sense, but modern margins in sport and commerce are so fine that
a nation only needs to be a little subpar genetically for the effects to become
rather obvious.
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| - How Far Does the
Neo-Darwinian Theory W

A sexual system of reproduction with cross
decouples the selective effects of genes on a ti
scale that is usually not greater than ~100
generations. Comparatively rare advantageous
mutations can thereby avoid being swamped by -
much more frequent bad mutations. A penalty
has to be paid, however, when the advantages
conferred by the mutations are small, as they are

commonly supposed to be in neo-Darwinian
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theory, the penalty being that most small advantages are lost by stochastic
effects, only a fraction ~s succeed in penetrating a species. But this penalty
must be paid, since otherwise species could not evolve at all in a positive
sense.

When a species is developing new patterns of behaviour, advantageous
changes must necessarily be small, because the genetic material of the species
cannot anticipate what a new pattern of behaviour is going to be in advance
of it being adopted—the species must edge by slow degrees toward what is
new. But in a situation where a species is adapting to an environment it has
experienced before, the situation could conceivably be otherwise. Genes may
have changed over an intervening period since the environment was last
encountered, but provided the intervening period was not too long by only a
few base-pair changes on the DNA. Such comparatively minor changes may
be reversible, because of the species being already at the verge of what is
genetically required for readaptation to the old environment. Large
advantageous changes brought about by as little as a single base-pair change
on the DNA are then conceivable. Such cases are not evidence, however,
that advantageous changes can be large when adaptation with respect to an
entirely new environment is in question. Finding the neo-Darwinian theory
to work only weakly in the general situation, my impression is that some
evolutionists have sought to speed things up by wrongly considering cases
where species are only coping with environmental conditions they have
experienced before, so that memory is being misinterpreted as discovery.

The peppered moth, Biston betularia, so called because it has speckled
black and white wings, is frequently misinterpreted in this sense. A dark form
of the moth was first noticed near Manchester in the mid-nineteenth century.
Thirty years later it had outnumbered the light form of the moth, which had
hitherto been more common, as much as a hundredfold in the area. The
explanation offered for this phenomenon was that the dark form of the moth
was not as conspicuous to bird predators as the light moth against trees which
were blackened by the soot from the burning of coal in a heavily polluted area.

The dark form of moth has a working gene which produces the pigment
melanin, a gene that has become inoperative in light-coloured moths. For
convenience of discussion, suppose selective properties to be so severe that a
juvenile moth born light cannot survive to maturity in an environment of
dark trees, and that a juvenile born dark cannot survive in an environment
of light trees. Now suppose the environment to oscillate, first with dark trees,
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then with light, and so on, the switches taking place through phases of
several years in which both light and dark trees are present. What happens?

Start in the environment of dark trees with all melanin-producing genes
in working order. The rate at which the genes become inoperative is ~10-¢ per
gamete, so that for a population of M juvenile moths about 2 » 10¢ dud genes
are injected into the population at each generation. The dud gene being
recessive (i.e., the case h = 0) its severely deleterious effect shows up only in
homozygous juveniles, of which there are Mx?, where x is the frequency of
dud genes. Hence with the effect lethal in those homozygous individuals,
M dud genes are eliminated in each generation. Setting this elimination
equal to the injection rate gives x = 107, so that for M = 108 as an example
about 100 moths are born light in each generation, despite the property
being lethal in the environment of dark trees.

Permitting the old population of mostly dark moths to survive for several
generations as a switch is made, now let the dark trees give place to light trees.
Although the old population with a frequency ~107 of inactive genes can
produce only one light moth in a million, the circumstance that an immense
number of juveniles is produced means that some light moths continue to be
bomn, even though as the trees become light, avian predators produce a
spectacular decline of the adult population of dark moths. With dark-coloured
juveniles being picked off in mass on their way toward maturity, the light
moths come through to maturity in far greater proportion than the ratio of
one to a million in which they are born. Selection against dark moths
attaining maturity eventually becomes intense enough for the light ones to
find each other, and for mating to take place between them. When this
happens there is an explosive production of light-coloured juveniles, with the
consequence that the frequency x of the inactive gene rises with great rapidity
from its former value ~107 to unity. Notice that it is the capacity of adults to
produce many juveniles that saves the day for the moths. If adults produced
only a few juveniles, light moths would hardly be born at all as the population
of dark moths fell away, and so the light moths would never find each other,
and the species would become extinct. From this example we see, therefore,
why creatures exposed to drastic oscillations of the environment need to
produce immense numbers of juveniles—in order that rare properties
continue to show themselves as the population falls.

Now consider a switch back from light to dark trees, again permitting a
number of generations of the moths to occur during the interval in which the
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switch is made. For survival now, it is essential to re-activate the melanin-
producing gene, and to do so before the switch of the trees is completed. The
moth has two advantages on its side. Provided the trees have not been light-
coloured for more, say, than 100,000 years, it is not likely that the inactive
gene will be carrying more than one defect, one base pair on the DNA
needing change. The other advantage is that, if the one base pair can be
restored, the resulting melanin production is a dominant property, with a
working gene on one chromosome set sufficing to make the moths dark
again. Taking the probability of repairing a particular base pair as ~10- per
gamete, the chance that a juvenile at random returns to the dark form is
~2 + 107, whence for, say, 108 juveniles the dark form is recovered in only a
few generation. Then, with melanin production dominant, the first mating
of the dark form produces a flood of dark juveniles, with a consequent quick
return to the previous situation.

Provided inferior genes are separated from a superior form by only a
single base pair, as in the example just considered, a large advantageous
mutation can be found, by populations as large as 108 in a few generations
and by species with populations of order 10°in a few hundred generations.
But when genes are not poised on the very edge of important selective
significance, when they are separated from important advantage by two or
more base pairs, the advantage cannot be found. In the above discussion of
the peppered moth, suppose that after the first switch from dark to light trees,
the situation were maintained for a very long time before the second switch
back to dark trees. During the long episode of light trees further damage to
the melanin-producing gene would occur without selective penalty. Suppose
the further damage to be such that every melanin-producing gene develops a
second base-pair error, so that when eventually the trees switch back from
light to dark all genes have two base-pair errors which must then be set right
if melanin production is to be resumed and the moths survive. The chance
of setting a particular base pair right in a particular gene in G generations is
~10°G, and the chance that two base pairs are set right in the same gene is
~(10°G)2. For a total of 2N genes in a population of N individuals the
probability of one emerging in a repaired condition after G generations is
therefore ~2N(10°G)?, which to be of order unity requires G = 10%/(2ZN)%%.
A mammalian population with 2N = 106 would require G = 106 generations,
which is so long that further errors would accumulate in every individual
before the two base pairs were corrected in any individual. For 2N = 108,
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about 10° generations would be required—far too long to save moths in a
practical situation.

From this example we can say that for any discarded gene properly to be
recovered in a practical situation, it is necessary that the genes in question
shall not differ from a working condition by more than one or two base-pair
errors. Once genes drift by more than this from a working condition they can
be considered to have gone permanently dead, thereby explaining an
otherwise mysterious conclusion of classical biology, that once species
become highly specialized they tend to become extinct. A highly specialized
species gains a major advantage so long as environmental conditions
favouring its precise mode of adaptation persist. But the advantage so gained
tends to make some gene properties redundant that were previously necessary
for survival. The properties in question, no longer protected by natural
selection, develop errors. Once the errors accumulate to several base-pair
mistakes per gene, the original properties become irrecoverable, and should
the environment change so that the original properties are needed again, the
species plunges to disaster and becomes extinct.

I am told by zoologists that the growth of fur is controlled by a single
gene, which in humans has gone inactive. It seems rather unlikely that a
sufficient number of generations has elapsed since the gene went dud for
more than a single critical base-pair error to have yet accumulated. If so, the
chance of any human child being born in a fully furred condition must be
~10°°. About one such child would be born per century in Europe. The
usually quoted example is Adrian Jeftichjew, the so-called Russian dogman.
If environmental conditions ever demanded that humans should return to a
furred condition, given sufficient positive selection and a millennium or two
in which to operate, fur is probably recoverable, when no doubt our present
unfurred condition would be seen as a temporary unfortunate episode that
was not spoken about in polite society.

The extreme rarity with which furred children appear in the human
population, even with a minimal error in the relevant gene, shows by a
practical example how impossibly rare it would be for a gene with several
errors to be again set in a working condition. The situation for three or more
errors would be rare beyond any possibility of experience, while the situation
for a hundred or more errors would be beyond consideration even in the most
abstract sense. Yet there are of the order of a thousand genes in the simplest
biological systems, and many more than a thousand in the higher plants and
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animals, that each demand more than a hundred base pairs to be just so in
order that they be in a working condition. The problem for the
neo-Darwinian theory is, not to explain situations like the peppered moth
involving only a single error on a single gene, but the evolution of thousands
of genes each requiring a specific arrangement of hundreds of base pairs if
they are to function at the level of even the simplest organisms.

Let me give a few examples. The process of translating base pairs on
DNA into a protein involves various kinds of RNA molecules which act as
intermediaries, with transfer RNA (or t-RNA) molecules, establishing a
correspondence between triplets of base pairs on the DNA and the
appropriate amino acids in the protein. If a wrong t-RNA got into the
system, giving a wrong amino acid response to a triplet of base pairs, the
resulting proteins from all genes would be garbled, and for highly sensitive
proteins like the enzymes the situation would be disastrous. Hence little or
no latitude is permitted for the t-RNAs, and so the nucleic acid which codes
for the t-RNAs can have very little latitude indeed, with hundreds of base
pairs involved for each t-RNA.

Because of redundancy in the genetic code it is not possible to work
backward from the amino acids of a protein to the triplets of base pairs which
coded for it—on the average there are about three different triplets coding for
the same amino acid. Even though natural selection may hold a protein to a
unique chain of amino acids, shifts of base pairs can occur provided they do
not go outside the redundancy permitted by the genetic code. Such selectively
neutral variations in the DNA are found in the case of the protein histone-4,
which has a chain of 102 amino acids. In humans about thirty distinct genes
code for histone-4, apparently because there is need for a large amount of this
particular protein to be produced. The genes have variations in their base
pairs, but the variations are all of the kind permitted by the redundancy of the
genetic code. They all code for the same amino acid chain. Other variations
that did not code for the same amino acid chain must surely have occurred but
were stamped out by natural selection. Essentially, the same amino acid chain
being found also in other animals and even in plants, we have a case in
histone-4 where more than 200 base pairs are conserved across the whole of
biology. The problem for the neo-Darwinian theory is to explain how the one
particular arrangement of base pairs came to be discovered in the first place.
Evidently not by random processes, for with a chance 1/4 of choosing each of
the correct base pairs at random, the probability of discovering a segment of
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200 specific base pairs is 42%, which is equal to 10712, Even if one were given
a random choice for every atom in every galaxy in the whole visible universe,
the probability of discovering histone-4 would still only be a minuscule ~1040,

The histones are a small class of protein which play a critical role in the
process of cell division. Except at times of cell division the chromosomes
exist freely and separately in the cytoplasm of a cell. With the approach of
cell division, the chromosomes are first duplicated and then condensed into
a compact, much more visible structure known as chromatin, which can be
stained by suitable dyes to make it accessible to microscopic examination.
The histones appear to provide physical support for the chomosomes in this
process of condensation and in the complex maneuvers, which then lead to
crossover and cell division. A form of histone-4 with rogue properties that led
to wrong crossover or to chromosomes being torn during cell division would
clearly be lethal, just as wrong t-RNA molecules would be lethal. So can one
plausibly explain the observed uniqueness of histone-4. Without histone-4
being exactly right, cells could not divide properly and nothing in the whole
biological system would work correctly.

Faced with this situation, neo-Darwinians retreat into an untestable
position. Histone-4 evolved step by step they characteristically argue, with
each step requiring no more than a single base-pair change. To the objection
that step-by-step evolution was not possible because histone-4 is an all-or-
nothing case, they reply by admitting that, while in the present situation this
may be true, the situation as it once was differed in this respect. In a more
primitive situation, histone-4 evolved step by step it is claimed, thereby
retreating neatly into the unknowable and untestable, a device which,
however, is not logically tenable because primitive systems without sexuality
and crossover cannot evolve.

The issue properly within the range of science is whether the basic
genetic features of terrestrial species—enzymes, t-RNA molecules, the
histones, the genetic code itself—are indigenous to the Earth at all. Biologists
have sometimes said that they see no advantage in transferring the problem
of the origin and evolution of life onto a cosmic stage because the deeper
problems would still have to be solved. I find this point of view strange.
When in science several paths are open to investigation it makes sense to try
the apparently simplest one first. But if what at first appeared the simplest
path turns out to lead into a morass, it then makes sense to investigate other
paths. The aim of science should be to discover the correct path, not to
adhere to an incorrect route because at first glance it seemed simplest.
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Microorganisms and genetic fragments are extremely space-hardy. They
can withstand very low pressures and wide fluctuations of temperature, and
they are remarkably resistant to radiation damage, especially if protected by a
little shielding material against ultraviolet light. The Earth’s atmosphere would
permit space-incident biomaterial to make a soft terrestrial landing without
damage occurring due to excessive heating, provided the biomaterial were in
the form of small particles with diameters less than ~100 um. The physical
conditions therefore permit both microorganisms and the eggs and sperms of
lower animals to be incident from space, as well as viruses and viroids, which
can add further genes to species already established here on the Earth.

The genetic makeup of a plant or animal incident from space would not
initially yield a close adaptation to the terrestrial environment. Many
present-day species possess marvelously subtle adaptations of the kind which
delight the makers of the excellent nature films shown frequently these days
on television, adaptations in which a plant or animal makes special use of
some fine detail of the environment—it secures a niche as one says. Space-
incident organisms could hardly possess such intimate relationships as are
actually found. Nevertheless, a general broad correspondence with the
environment could quite well arise, for if one imagines the external
incidence of genetic structures covering a very wide range of properties,
considerably wider than could survive here on the Earth, then the terrestrial
environment would automatically select out those genetic associations
which happened to permit survival on our planet.

The nature films shown on television, despite their technical excellence,
are likely to yield the wrong impression that all terrestrial life is subtly adapted
to its environment. In some cases it is, in others it isn’t. By concentrating on
well-adapted cases, a false impression is created, the same false impression that
has been created by Darwinians from 1860 onward, the recipe being always to
concentrate on the successes and never to mention the failures.
Microorganisms in particular are often quite seriously disadapted from their
environment, as for instance wide divergences from optimum temperatures.
Indeed, it would be more correct to say that microoganisms exist wherever
they can gain a toehold, regardless of adaptation.

It is a mistake to suppose that science is an unswerving pursuit of
objective truth. Partially it is, but only to the extent that the truth does not
turn out to contradict what has already been taught in the educational
process. Students in organic chemistry still learn that in 1828 Friedrich
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Woehler destroyed the old doctrine of vitalism by preparing urea from
ammonium cyanate. But the Iatter almost surely had its origin in the action
of denitrifying bacteria in the soil, so that the claimed production of a
biological product from nonbiological sources was very likely wrong, and
could have been seen to be wrong from Pasteur onward. Mistakes of scientific
history are still more ineradicable. Few students are ever informed that the
concept of evolution through natural selection was under discussion fully a
quarter of a century before Darwin’s book On the Origin of Species. Ironically,
the theory was then rejected for what was considered a failure of species to
adapt to the environment.

Writing in the mid-1830s, Edward Blyth was well aware of the precision
of adaptation at the level of varieties of species, but not above the level of
species he maintained. The argument he gave was a powerful one, and in the
later enthusiasm for the Darwinian theory it was never answered properly.
Most species are limited to a geographical area, with good adaptation to the
conditions well inside the area but with less and less good adaptation toward
its boundaries. Why, Blyth asked, if species can evolve to the great extent
that would be needed to explain the differences between genera, families,
orders, and classes can they not evolve to the lesser extent that would
maintain adaptation to and beyond the boundaries of their respective areas’
Instead of doing so, however, species stay obstinately fixed, disappearing as
the limits of their habitats are reached. According to Blyth, this fact, which
was the rule not the exception, proved that the capacity of species to adapt
must be limited, making what today we call the Darwinian theory (but which
Blyth considered in 1837) untenable.

This argument of Blyth’s was strong enough to hold back the theory of
evolution by natural selection for more than two decades, causing Darwin
not to risk open confrontation. Darwin retreated into a protracted study of
barnacles instead, and it was Alfred Russel Wallace who eventually took up
the challenge on behalf of evolutionists, who included Robert Chambers as
well as Darwin. Chambers was the first person so far as [ am aware to propose
that land-based animals had evolved from fish. Wallace was in the position
of having to earn a living in a subject which in those days offered few
opportunities to any but persons with private means. He hit on the idea of
combining his interest in biology with the need to earn a living by
collecting specimens, which were then sold to museums and private
individuals. In the course of his wanderings in the Amazon Valley and later
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in the Dutch East Indies over a period from 1847 to 1862, Wallace is said to
have discovered 30,000 new species, which meant that his knowledge of
field zoology became immense. So many of the intricate adaptations of the
kind we see today became apparent to him that evolution could be their
only explanation. Wallace then extended the evidence for evolution that he
could see in present-day species to the recent fossil record. In the paper
published in 1855 he was able to show to the satisfaction of even such a
sceptic as the geologist Charles Lyell that present-day species had been
preceded by similar species in similar geographical areas, Wallace’s law as it
eventually became known. Noting the profound effect Wallace’s arguments
were having on Lyell, Darwin turned back from barnacles to evolution, but
still not out in the open. Still missing from Darwin’s concepts was what later
became called the principle of divergence. Eventually, however, in June
1858, Wallace sent a manuscript to Darwin that explained the principle of
divergence so clearly that Darwin was at last able to begin his preparations
for On the Origin of Species, which repeated in 490 pages what Wallace’s
manuscript had said in 10 pages.

But the objections to the theory of evolution by natural selection had
not really been answered, and by 1870 Wallace had come to realize that
something in addition was needed. Thus to Wallace, as to Lyell and to Blyth
long ago, there was something right about evolution by natural selection and
there was something wrong. This balanced position, which was the correct
one, never had a fair hearing from 1870 onward however, because the
developing system of popular education provided an ideal opportunity for
zealots who were sure of themselves to overcome those who were not, for
awkward arguments not to be discussed, and for discrepant facts to be
suppressed. This was because popular education created a body of students
who, like Wallace himself, had of necessity to make their ways in life, and
because it is only students from privileged backgrounds who can afford to
adopt views contrary to what they are told.

There was nothing wrong in Wallace’s use of the recent fossil record but
attempts to use the more distant fossil record in order to investigate wider
evolutionary connections has not been similarly successful. From 1860 onward
the more distant fossil record became a big issue, and over the next two decades
discoveries were made that at first seemed to give support to the theory,
particularly the claimed discovery of a well-ordered sequence of fossil horses
dating back about 45 million years. Successes like this continue to be
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emphasized both to students and the public, but usually without the greater
failures being mentioned. Horses according to the theory should be connected
to other orders of mammals, which common mammalian stock should be
connected to reptiles, and so on backward through the record. Horses should
thus be connected to monkeys and apes, to whales and dolphins, rabbits, bears.
... But such connections have not been found. Each mammalian order can be
traced backward for about 60 million years and then, with only one exception,
the orders vanish without connections to anything at all. The exception is an
order of small insect-eating mammal that has been traced backward more than
65 million years, through the mysterious event which extinguished about half
the genera of all animals including the large dinosaurs, including indeed every
animal weighing more than 50 pounds of whatever species, and even including
microscopic animals living on the sea bed.

The story is the same for other classes of animal, the case of insects
being particularly well documented. Orders of insects can be traced back
over 200 million years for mayflies and dragonflies and about 300 million
years for cockroaches, grasshoppers, and locusts. The striking feature of
these long records is that they contain little evidence of change; and they
too fade away to nothing instead of connecting to other orders of insects.
The theoretical presumption of evolution for a common ancestor is not
there in the insect record, just as it is not there for mammals, or for any
other class of animal or division of plant. Still less is there evidence of
evolution connecting different classes and divisions, subkingdoms or
kingdoms. In 1860 it could be claimed with some plausibility that the record
was seriously incomplete, and it could therefore be hoped that with
increasing knowledge the more distant connections postulated by the
theory would eventually be found. They have not been, and since geology
has expanded enormously in scope over the past century, it now seems
unlikely that the postulated connections will ever be found.

One still hears talk of the incompleteness of the record, but fossils of
many insects continue smoothly throughout the period some 60 million years
ago when the mammalian record fades away. To the excuse sometimes offered
that insects fossilize better than mammals, the reply is that, if insects fossilize
so well, why is it that the insect record also fades away before connections
between the insect orders are found? Why is that crustacea, shrimps for
example, continue smoothly through the period some 350 million years ago
when the insect record fades away?
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The external incidence model, combined with what has been learned
from the mathematical results of earlier chapters, copes with all these
difficulties. As we have noted, external incidence can be expected to give
only coarse fits between species and the environment. Fine-scale adaptation,
which so impressed Wallace and his contemporaries, comes from the ability
of species to optimize adaptation with respect to single base-pair changes.
Wherever a gene can improve performance by a single base-pair change,
mutations will find the change and selection will operate to promote it.
What mutations cannot do is to find improvements which demand the
simultaneous change of several base pairs. Once the range of improvements
conferrable by single base-pair changes have become exhausted, a species
cannot evolve further. It becomes limited in its environmental range, exactly
as Blyth pointed out so many years ago. Boundaries to its habitat are
inevitably reached because the range of genetic adaptation has become
exhausted. Although improvements may lie only a few base paits away, they
cannot be found. Only if the genetic system is again stirred up by external
incidence can anything further take place.

External incidence appears to come in storms of rather short duration,
the most recent very large storm being the one that occurred 65 million years
ago, to which reference has already been made. Species seem to vary
considerably in their sensitivities to genetic storms. Relatively insensitive
species, those which largely exclude viruses, remain locked into a particular
mode of existence. Such species are common among invertebrates, with
insects, spiders, scorpions, and shrimps showing little or no evolution even
over hundreds of millions of years. These are the so-called living fossils
extending backward in time with essentially no change, in the case of some
shrimps for as long as 500 million years. Other species, however, are highly
sensitive to genetic invasion from outside. Such species face either
extinction or immense change and fragmentation at a major genetic storm.
Fragmentation comes from the imposition of a coarsely defined range of
genetic possibilities, which after fragmentation are refined by the single base-
pair adjustments discussed above. In effect, there is a genetic explosion, at
first with the possibilities only broadly adapted to the environment, with the
fine-scale adjustments subsequently taking place. It was the fine-scale
changes that so greatly impressed Wallace and his contemporaries, and
which do indeed fit the tenets of the neo-Darwinian theory. What the
mathematics shows is that nineteenth-century biologists were correct so long
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as they remained within the range of practical experience. Where the
situation went wrong was in making a huge extrapolation from the safe
ground of practical experience, and still more wrong in persisting with the
erroneous extrapolation in more recent times, long after ample evidence was
available to show that an incorrect guess had been made.

The reason why no connections are seen in the geological record
between the orders of mammals is that the different orders are fragments from
a genetic explosion, probably an explosion resulting from the immense storm
of 65 million years ago. The explosion happened so quickly, producing
creatures dissimilar to what had been there before, that the geological record
failed to capture the explosion itself, only its products. In the mammalian
case, the products are creatures of broadly similar type which emerged as
fragments from the explosion, and which now constitute the different orders
of mammals.

Likely enough a similar picture applies to an explosive fragmentation of
an order into families of creatures, with such less violent convulsions arising
from genetic storms of lesser magnitude, and with species repeatedly settling
into fine-scale adaptations following every storm, whether the storm be large
or small. A similar explosive concept was arrived at in the first half of the
present century by the botanist J. C. Willis, but without a model to support
it. Willis set out his case in a book The Course of Evolution (Cambridge
University Press, 1940), which although rather repetitive contains an
impressive array of facts. From botany rather than zoology, Willis arrives at
the concept that in recent years has been call evolution by “punctuated

“equilibrium,” a concept for which he gives references back to 1837, the same

year which saw the pioneering work of Blyth. Naturalists in 1837 were very
close to the truth, closer a cynic might say than they are today.

There is an interesting order of plants that I should mention, however
briefly, before closing this chapter. The Scrophulariales have all the aspects of
an explosion into genera. Their diversity is enormous. The order includes the
tomato, potato, eggplant, chili pepper, tobacco, snapdragon, African violet,
gloxinia and penstemon, bladderworts and magnificent ornamental trees such
as the jacaranda and the white Indian cork tree. It is striking that the
Scrophulars also date from the immense genetic storm of 65 million years ago.
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" The Genetic Cost of Evolut

Selection cannot protect a species against ;
deleterious mutations or promote the spread of
favourable mutations without a cost in genetic
deaths occurring. In the bisexual model we have
studied from Chapter 3 forward, the necessary
genetic deaths are born by an initially excessive
population of juveniles, which besides standing
up to accidental disasters imposed by the
environment must also bear the cost of

selection.
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We took the juvenile population to be M, leading in each generation to a
population N of adults who survive to reproductive age. For plants,
invertebrate animals, fish, amphibians, most reptiles, and smaller mammals,
M is so large compared to N that no great fraction of the available juveniles
is required to die in order to maintain the integrity of a species with respect
to deleterious mutations, or to permit sufficient advantageous mutations to
penetrate a species to yield an effectively rapid rate of positive evolution. For
the larger mammals and for many species of birds, however, M is not so large
compared with N that the issue of genetic cost can be taken for granted.
Typically in the latter cases, M might be about 5N, corresponding to each
mating pair producing an average of 10 offspring. It would not be
unreasonable to suppose that 40 percent of juveniles fail to reach maturity for
accidental nongenetic reasons, leaving 3N in these cases as the margin of
juveniles on which selection can operate during a final reduction to an
eventual population of N surviving adults.

We have seen repeatedly that exp —A is a load factor imposed on every
individual in order to prevent a continuing penetration of a species by
deleterious mutations. With the deleterious mutations taken mostly to be
recessive, that is, h = 0, A is the average number of such mutations incurred
in the replication of a single set of chromosomes, A = 0.3 being a reasonable
numerical estimate. If for simplicity of argument we also take the bulk of the
recessive deleterious mutations to be lethal in homozygous individuals, exp -4
is the fraction of juveniles that must die to maintain the integrity of the
species, about one in three, as we discussed in some detail in Chapter 5. Thus
the need to maintain the integrity of the species reduces the margin of 3N
juveniles to 2N, leaving N who can be squeezed out in the promotion of
positive evolution. Hence, we conclude for birds and larger mammals:

That the number of juveniles who can be sacrificed to improve by
selection the adaptation of a species to its environment is of the
order of the surviving adult population. Neither birds nor larger
mammals can evolve at a faster rate than is implied by this
constraint, which evidently sets a maximum rate at which
evolution can take place.

The human species is a critical example for testing this deduction, partly
because the numbers taken above for M/N and for exp -4 are closely
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applicable to the human case, and partly because human evolution over the
past million years appears to have been very rapid. Has the measure of human
evolution been consistent with the availability of dispensable juveniles one
can ask? A similar question has relevance in other interesting situations, as,
for instance, following one of the major genetic storms discussed in the
preceding chapter. In the wake of such a storm, opportunities arise for rapid
evolution along divergent lines: How rapid could such genetic explosions
and fragmentations be? And on a lesser scale, a sudden change in the
environment can throw a species out of a well-adapted condition: How
quickly can positive evolution then recover adaptation? We considered the
latter question previously for the peppered moth, but only for the change of
a single gene. When many genes are involved how does the situation
develop?

Just as we did for deleterious mutations, let all advantageous mutations
have the same selective factor s, and let s << 1. Write A for the rate per
gamete at which such mutations arise from changes to single base pairs on

the DNA of a species. Then
A = 107 (Number of opportunities of improvement) . (7.1)

Here 10 per gamete is taken as the chance of a particular base pair happening
to be miscopied into another explicitly stated pair. The interesting cases are
those mentioned above, where the number of opportunities for improvement
happen to be unusually large. But even if the opportunities were indeed
remarkably large, say 10%, we should still only have A = 103, much smaller
than A = 0.3 for deleterious mutations. A must inevitably be small compared
to A, because the opportunities for damaging a complex and delicate system
must always be much greater than the opportunities of improving it.

Let us first obtain the evolution rate for specified A, on the assumption
that the constraint discussed above does not intervene. The rate of
appearance of new advantageous mutations in a population of N individuals
is 2N A per generation. Provided the constraint does not intervene, each
mutation acts independently of the others, in which case the probability of
each mutation penetrating and becoming fixed is the same as we calculated
for a single gene in Chapter 4. Taking the mutations to be “semidominant,”
that is, taking h = Y2, the results set out in Table 4.1 show that the fixing
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probability is simply s, whence a fraction s of the 2 AN advantageous
mutations arising in each generation would become fixed. Should A be
maintained for G generations the total number of advantageous mutations to
become acquired by the species would therefore be 2 ANsG, and the
improvement in the fitness of a typical individual (over the initial situation)

would be

1+ = exp (2ANs2G) , (7.2)

so that the improvement becomes considerable for

G > (2ANs2)_l . (1.3)

Putting A= 103 for a situation with a large number of possibilities of
improvement, and taking N = 10% s = 0.001, (7.3) gives G > 500
generations. The generation length in the human case is about 20 years, so
that the time scale for significant human improvement would be only ~104
years, an estimate that is consonant with fast evolution for our species. Such
a gratifying result is contingent, however, on the existence of a large number
of possibilities of improvement, and therefore on events creating such a
multitude of possibilities, which is to say on a genetic storm adding to and
shuffling the genes available to a species.

Returning now to the problem of whether the supply of juveniles is
adequate to permit evolution at the rate implied by (7.2) and (7.3), the next
step is to rework the analysis following (5.12), but with s > 0, h = /2 and
replacing A by A, the aim being to obtain the average number of
advantageous mutations possessed by a typical individual. In place of (5.13)
we now have

1
AAN[p(x)xdx (7.4)
0

where the appropriate expression for p(x) is

=
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1
—2Nzs)d
exp(2Nxs) Jexp( 2s)dz
p(x)=2 .l (7.5)
x(1—x) :
Jexp(—Zst)dz
*0
Again taking 2Ns >> 1, we have
2 2
u(x) = - exp(2Nsx0) = (7.6)

for xo = /2N, s << 1. From (7.4) and (7.6) we see that the average number, y
say, of advantageous mutations possessed by an individual is

u = 8AN : (7.7)

With N = 109, say, and A = 103 per gamete as the favourable mutation rate
in a case where a very large number ~10° opportunities for improvement
exist, we have g = 8000. Hence each individual possesses many favourable
mutations in such a situation.

Selection takes place because of statistical scatter in the distribution of
favourable mutations, those with ¢ + (u)"? mutations having a selective
advantage

(145" = exp(2 ,us) (7.8)

over individuals with u — (1) mutations. The requirement that the supply
of expendable juveniles be adequate to maintain the evolution rate is that
the exponent of this exponential should not be greater than of order unity,

2 s £ -1 (7.9)
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With (7.7) for i we therefore require

32ANs* < ~1 . (7.10)

This is in order that significant evolution may occur in
G = (27Ns?)1 generations. If the supply of juveniles is such that the upper
limit imposed by (7.10) is attained, evolution can improve the fitness of a
species by a factor e in only 16 generations, a very fast rate; indeed, a rate so
fast that the limiting factor on the speed of evolution is seen to be the
availability of advantageous mutations, not the genetic cost of evolution.
Given sufficient availability, evolution can proceed at a rate which by any
reasonable practical consideration is extremely rapid. The situation appears
clear-cut and the circumstance that some geneticists have concluded
otherwise raises something of a mystery, especially as a whole new school of
mathematical biologists have used this issue to question the correctness of
the Darwinian theory itself, preferring instead what has become known as
evolution by neutral drift (for example, M. Kimura, The Neutral Theory of
Molecular Evolution, Cambridge University Press, 1984). Quite apart from
the impossibility of arriving at such proteins as histone-4 by random
mutations—that is, random trials—the above considerations show that it is
opportunity not the speed of evolution which is the problem for the
Darwinian theory, the problem is the one emphasized already in Chapter 6,
that opportunities are confined to those which can be reached by only single
base-pair changes on the DNA.

On pages 26 and 30 of his book, Kimura states that for evolution
proceeding at such a rate that one new gene with s = 0.01 is substituted
throughout a species in 100 generations, the cost is so great that “no
mammalian species could tolerate it, while for one new gene substituted
every two generations each parent must leave e = 3.27 X 10° offspring for
one of the offspring to survive and reproduce.” According to the above
discussion, a fraction s of the 2 AN advantageous mutations arising in each
generation become fixed. Thus for one new gene to be substituted in two
generations we require 2 ANs = 0.5, in which case the genetic cost factor
(7.8) is exp(8s)"2. Since Kimura defines his selection coefficient to be half of
our s, a value 0.01 in his statement corresponds here to s = 0.02, and
exp(8s)"2 = 2. Such a genetic cost is just within the selective capacity of a
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population with 2N juveniles available, the case considered above for birds
and the larger mammals. For the substitution of one gene with s = 0.02 in two
generations, only a few juveniles need be born for each surviving adult, an
immense difference from the ~3.27 + 108 juveniles which Kimura claims to be
necessary. The discrepancy is indeed so enormous that it seemed necessary to
attempt to trace its source.

The attempt proved a frustrating business. To start with, Kimura gives no
explanations, only statements, and then only on pages 26 and 30 of his book.
It seemed to me curious that, with 250 pages available, a clearer account of
why the Darwinian theory was as devastatingly wrong as it is said to be
shouldn’t have been given. A carefully reasoned argument, at whatever
length was necessary, would have been worthwhile in establishing so
profound a result. In Fisher [ also found nothing. In Sewell Wright's large
treatise I found four pages (op. cit., Vol. 3, pp. 434-437). What was this, I
wondered, only four pages out of 2000 devoted to the disproof of Darwinism,
and incomprehensible at that.

The concepts on which Kimura bases his statements seem to have first
arisen in a paper of J.B.S. Haldane (Journal of Genetics, 1057, Vol. 55,
pp. 511-524), a paper which [ found just as curious as the more recent aspects
of the story. Embedded in symbols, whose meanings were at first unclear,
Haldane makes a statement that is both unequivocal and checkable:

The unit of evolution, the substitution of one [form of gene] by
another, if carried out by natural selection based on juvenile
deaths, usually involves a number of deaths equal to about 10 or 20
times the number in a generation, and perhaps rarely being 100
times this number.

Let us examine this statement from two points of view. First, a correct
point of view from which it can be seen to be untrue, and, second, a strange
interpretation on which it seems to have been based. Write x(t) for the
frequency at time t of an advantageous mutation with initial frequency xo.
Provided the selection factor s is small compared to unity (as it is taken to be
in Haldane’s paper), it is irrelevant whether the ratios of the fitnesses of

(A, A): (A a) : (a, a)
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are taken for the case h = /2 to be
1+s:1+12s:1 (7.11)

or
1:1-ths:1-s , (7.12)

since to the first order in s the form (7.11) can be changed to (7.12) simply
by absorbing a factor 1 + s into the normalization coefficient o. For con-
formity with earlier calculations it would be better to use (7.11), but to
permit easier comparison with Haldane and with Sewell Wright (loc. cit.),
(7.12) will now be used. The normalization coefficient o for a population
which remains constant from generation to generation is then determined by

(x[x2+2x(1—-x)(l—%s)+(1—x)2(l—5)]=1 s (7.13)
that is,
a = L (7.14)
l-s(1-x) ’ .
and the change of x from one generation to the next is given by
Ax+d)=a 2 +2x(1-x)(1-45)] . (T19)
that is,
dx _1 sx(1-x)
dt 2 1-s(1-x) ’
(7.16)
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In the absence of the selective factor s each juvenile of whatever genetic
type would on the average have the same chance of surviving to reproductive
age. But in the presence of the selective factor juveniles of type (A, A) have
a chance increased by o of surviving to reproductive age, while heterozygotes
(A, a) have a chance increased by o(1 — !/2s) and homozygotes by o1 — s).
Hence the gain of survivors by type (A, A) is

Nx*(1-x)
Nt (o —1) = LEAC G 7.17
' ) 1-s(1-x) (71D
the gain by heterozygotes (A, a) is
B IR s Nx(1-x)(1-2x) 718
2Nx(1-x)[or (1-45)-1] = 500 . (7.18)
and the gain by homozygotes (a, a) is
2 sNx(l—x)2
_ —5)-1] = - /2 1
N(1-x)"[a (1-5)-1] () (7.19)
The sum of (7.17), (7.18), and (7.19) is of course zero, from which
1 x(1-x)
71 +L(7.18)=1(7.18)+(7.19) = =sN ————
(7.20)

While there is no absolute fiat as to how one must define the concept of
“genetic deaths” quantitatively, it is sensible it seems to me to adopt (7.20),
which then expresses the necessary condition that the gain of individuals due
to A is equal to the loss of individuals due to a. The entire number of genetic
deaths over all generations during which A becomes fixed in a species can

e
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then be computed from

sNx(1-x)

——=dt
I-s(1-x)

ﬂ%(7.18) +(7.19)|dt = %J

1
=N [dr=N(1-x)) < N
0 ' (7.21)

in disagreement with the above quotation from Haldane. The result (7.21)
assumes that the environment imposes a fixed number N on the population,
forcing individuals with genetic variability to compete with each other. As a
consequence of the competition, the frequency of A increases from x, to
unity according to the selection equation (7.16). Since x;, can be taken large
enough for stochastic fluctuations to be ignored (i.e., x, > s), but with x,
nevertheless small compared to unity, stochastic effects do not affect the
result significantly. Such it seems to me is the standard concept of natural
selection, whereby the constraint on the permissible number of individuals
forces genetic change in a species. Hence, according to the standard
concepts, the number of genetic deaths required to fix a gene (over -~s!
generations) is close to the population number N, not a comparatively large
multiple of N.

In practice, the assumption in the above calculation that N remains
constant from generation to generation is unlikely to be strictly correct,
because as a species improves its adaptation to the environment, competing
species tend to be crowded out, thereby permitting N to increase. More
strictly, N should be considered as a function of x. Before proceeding it is
therefore necessary to consider whether the result (7.21) could be
significantly changed by allowing N to increase with x. Suppose the original
gene type a to sustain a population Ny, and let the population be N, f(x)
when the frequency of A has risen to x. In place of (7.13) we then have

Otf(x)[x2+2x(1—x)(1—%s)+(1—x)2(1—s)]= flx+%) . (22

<
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where on the left we have the production of offspring by the generation in
which the gene frequency is x, and on the right we have the function f
computed for the next generation. Thus

1+d£nfdt

=— 74l (7.23)
“ 15 (I-x)

In place of (7.15) we also have

2f(x+%)(x+%)= f(x)a{2x2+2x(l—x)(l—%sﬂ . (1.24)

that is,

dinf ol Lexa- }
(l+ " j(x+dt) o{x 2sx(l x) . (1.25)

Using (7.23), the factor 1 + d#nf/dt cancels in (7.25) and

dx 1 x(1-x)

=_% (7.26)
dt 2 1-s(1-x)

Since (7.26) is the same as (7.16), permitting the population to vary with x
has no effect on the penetration of A.

We are now in a position to return to the paper of Haldane cited above.
Suppose that the gene type A is deleterious up to time ¢ = t, at which the
frequency of A is xy << 1, the population number being No. At t =ty an
environmental change occurs which causes A to become advantageous, so
that thereafter the frequency x of A increases according to (7.26). It is also
supposed that at time ¢ = t, the population experiences a downward step from
which it gradually recovers as A penetrates the species, until the original
population Nj is reestablished as x rises to unity. Such a model can be
represented by choosing

{
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f(x)=1-s(1-x) (\7.27)

with the population falling at time ¢, from population number Nj to
Noll = s(1 - xp)] = No(1 = s). Thus the population when the frequency of
A is x has the value

Nyf(x)= Ny[1-s(1-x)] : (7.28)

and the deficit of (7.28) below what the population would have been if there
had been no environmental shift is

Ny(1-x) : (7.29)

The deficit (7.29) is for a single generation, while the cumulative deficit
over the generations that elapse between the environmental change at ¢ = ¢,
and the recovery of the population to Ny at x = 1 is given by

sN, z (1-x)= sNof(l—x)dt

generations

= 2N, j s x)

= NO[—Z(I —s)tnxg +2s(1-x)| (7.30)

where (7.26) has been used for dx/dt. Omitting the small terms in s, this is
Haldane’s result. Sewell Wright, on page 435 of his volume 3, includes the
terms in s. Putting x; = 107 as an example, the coefficient is about 14, and
this is the source of the statement that natural selection for a favourable gene
“usually involves a number of deaths equal to about 10 or 20 times the
number in a generation. . . .” The deaths, however, have nothing to do with
the cost of fixing a favourable mutation. The deaths have been caused by the
environmental change, and are arbitrary at that, for if (7.27) were written

LIV UUNUUV YUV UL urviuviva

f(x)=1-8S1-x) , S#s , (7.31)

the number of deaths would be a factor S/s times (7.30). Hence (7.30) is an
artifact of the particular environmental effect assumed in (7.27). One could
argue with more sense that the penetration of a species by an advantageous
gene permits the population to rise, say according to

fx)=1+Sx . (732)

Then extra lives are lived, with a cumulative total during the fixing of the
favourable gene

SNy Y, x=SN,[xdt

generations

dx . (7.33)

The integral here is logarithmically divergent at x = 1, because in the absence
of stochastic effects the favourable gene never penetrates completely—as we
saw from the outset in Chapter 1. Taking stochastics to fix the gene when x
rises to 1 — €, the lives gained number

tn(1-
25N, lesll—;)x—) = 2§N0 f(—ex—(’-) ~s(l-x)| . (734)

The situation is evidently so arbitrary as to be genetically irrelevant. What is
genetically relevant is the result (7.21), representing the number of genetic
deaths which occur in the fixing of a favourable gene against a fixed constraint
on the population, and this is the way that the operation of natural selection
is usually presented. Haldane’s so-called cost principle is an illusion.

B
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The reader may wonder if I could have misinterpreted the situation. I
think not, for these reasons. As already mentioned, (7.30) is identical to the
formula given by Sewell Wright, not just in the main term —2 #nx, but also
in the smaller terms involving s. Second, in the introductory remarks to his
paper Haldane writes explicitly of environmental decline being caused by
“pollution by smoke, a change of climate, the introduction of a new food
source, predator, or pathogen, and above all migration to a new habitat.”
And third, if a logically sensible explanation of (7.30) existed, Haldane’s
paper would have been written more clearly than it was, Sewell Wright
would have explained (7.30) instead of conjuring it like a rabbit out of a hat,
and Kimura would not have based his book merely on the obscure remarks
quoted above. He would surely have devoted a whole chapter at least to a
careful analysis of the precise argument itself.

To end this chapter, let us see if we can at last understand the statement

“each parent must leave e!® = 3.27 X 10° offspring for one of the offspring to
survive and reproduce.” This statement was contingent on one new gene
being substituted throughout a species in two generations.

Suppose at time t = O a set of n favourable mutations, all with the same
selective factor s, have frequencies

xO’ xl’ x27 e X r; 7‘20, 1, I’l—l . (7,35)

SRR ;xr+]

Using (7.26) for each of the genes, considered to become fixed
independently of each other, the times t, t;, t,, ... of fixing are determined by

7 | — 21 1
e e

=2, r=01- - n-1 . (7.37)

From (7.36) and (7.37) it is easy to see that the values of x;, x;, ... are
narrowly spaced both at small x and when x is close to unity. The latter,
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arising from the 1/1 — z term in the integrand of (7.36), can be omitted,
however, because advantageous genes become quickly fixed by stochastic
fluctuations when their frequencies approach unity. Hence, in practice, there
would be no large number of genes with x values near unity. But those with
x small must still be narrowly spaced, with x, values determined by

o= = [= (7.38)

in the absence of stochastic effects, which can be neglected provided x, > ~s.

From (7.37) and (7.38),

=5, Ax,=x_,—x (71.39)

r+l1

Hence the total number of genes undergoing selection must be of order

1
1 ¢ dx
- — ———Enx , (7.40)
L -t

in order that one of them becomes fixed every two generations.

If now each favourable gene is accompanied by an environmental
decline of the form (7.27), with x for most of the genes being << 1, the total
loss of fitness for the number (7.40) is

1
(1—g) 575 (7.41)

Kimura gives a slightly different index here, namely,
1-4n Xq
(I—s) s ’ (7.42)

8-
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remarking that this change allows for the stochastic effects that were omitted
above. For s << 1, (7.42) is simply ~

ey, . (7.43)

In the discussion on page 26 of his book, Kimura first chooses
2(1 - /n x5) = 29.6 and then rounds 1 — /n x, to 15, in which case (7.42) is
exp —15=1/(3.27 X 10%). Kimura interprets the result as follows:

This means that to maintain the same population number and still
carry out mutant substitutions at the rate of one substitution every
two [generations] . . . each parent must leave . . . = 3.27 X 10°
offspring for one of the offspring to survive and reproduce.

It actually means no such thing. It means if, on every occasion when a
favourable mutant gene with selection factor s arises, the environment
happens to worsen so that the population it can support drops
discontinuously by the factor 1 — s, then in order to force the mutations
through to fixation at a rate of one every two generations, “each parent must
leave = 3.27 X 10° offspring for one of the offspring to survive and reproduce.”
The model is one in which mutations are forced through during an episode
of continuing decline of the environment. It is no surprise that an immense
production of juveniles should be needed to cope with an almost total
collapse of the environment, involving of the order of a thousand downward
steps in Kimura’s example.

It is evident that these considerations have no relation at all to the usual
situation in which the environment supports a more or less constant number
of individuals, against which constraint favourable mutations are selected
and unfavourable mutations checked. Not to put a fine point on it, the
claims are illusions.

Chapter8

Protein ‘Phyylogenies’—More lusio

Similar proteins involved in basic biochem
processes are found in an immense range of
organisms, crossing the boundaries of the

broadest taxonomic groupings even at the basic

level of kingdoms. Usually such proteins have

both similarities and differences in their amino
acids, although in the special case of histone-4
there is scarcely any variation at all in a chain of

102 amino acids. A set of about twenty proteins
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known as the cytochromes function together as electron-transfer agents. The
third in the set as it is usually ordered, cytochrome-c, has been extensively
examined (for details see M. O. Dayholt, National Biomedical Research
Foundation, Washington, D.C.). Comparing the amino acid sequences in
cytochrome-c from widely different organisms is not an entirely unambiguous
procedure, however, because the amino acid chains can have different
numbers of links. There are 104 links in mammals, 108 in insects, 108=110
in fungi, and 112 in plants. What is done when lengths differ is to use
piecewise matching. The chains are considered to be broken into a small
number of pieces in such a way as to achieve a maximum number of
coincidences of the amino acids between what are taken to be the
corresponding pieces. Where there are extra amino acids on one or other of
the chains, these extra insertions are not counted in making a numerical
estimate of the degree of matching. And because there is no unique length
of chain, the matching is normalized by expressing the count in the form

100 o Number of coincidences found
Number of links compared

(8.1)

Results for cytochrome-c would have been gratifying to older generations
of taxonomists, for the greater the taxonomic diversity of the organisms

compared, the larger (8.1) turns out to be. Grouping organisms in an
alphabetic sequence as follows:

(a) bacteria

(b) fungi (baker’s yeast, candida, debaryanyces)

(c) plants (wheat, sunflower, castor, sesame, mung bean)

(d) insects (hornworm moth, silkworm moth, fruitfly, screwfly)

(e) lamprey

(f) fish (tuna, bonito, carp)

(g) birds (penguin, chicken, turkey, duck)

(h) mammals (rabbit, dog, pig, cow, sheep, horse, monkey, human)

Per case we can denote comparisons within the same group by (a/a),

(bfb), ..., and comparisons between different groups by (afb), (a/c), (b/c), and
so on. Except for (b/b), for which (8.1) can be as large as ~25, comparisons for

-
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(c/c), (d/d), ... are ~8. Variations from group to group, on the other hand, gave
the following remarkable results:

(a/b, c, d, e f, g h)=65 . (8.2)
(blcd, e, f. g h)=45 , (8.3)
(cld.e f g h)=38 , (8.4)
(dle, f. g h) =25 , (8.5)

(el f, g, h)=17 , (8.6)
(flg.h)=1T , (8.7)

(g/h)=12 . (8.8)

The number of links compared in the piecewise matching described
above was usually about 105, so that there can be little difference for
cytochrome-c whether we consider numbers to refer to actual counts or to the
so-called distance given by (8.1). Some 35 amino acids are invariant across all
the organisms, while <65 are variable in the largest distance from bacteria to
the other organisms, with lesser distances being found the greater the
taxonomic sirglilarity between the organisms. The invariant 35 amino acids
must be precisely defined in order that cytochrome-c can perform its
enzymatic function. The remaining ~65 amino acids are in some degree
variable. But it seems highly unlikely that the latter can be changed without
selective advantages or disadvantages arising, since it would be most peculiar
to have 35 amino acids obligatory and the remainder free—free to within a
selective margin of, say, 1 part in 105, as they would need to be in order to be
treated as selectively neutral, which is the assumption that has been made by
investigators who have used values of (8.1) to construct a so-called
phylogenetic tree, a tree which purports to demonstrate the course of
evolution going all the way from a common ancestral cell to present-day
species. Rather does it seem that, with ~1/3 of the amino acid links mandat(?ry
in the cytochrome-c chain, the other ~2/3 of the links will be selective

-
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according to the particular function of an organism, with (8.2) to (8.8)
interpreted in terms of the functions of the organisms in question.

Bacteria are so different in function from the other organisms that all ~65
potentially variable amino acids in the cytochrome-c molecule are optimized
differently for bacteria from all the others. Of the ~65 possible variations, ~25
are optimized in the same way by all the others in (b), (c), ... (h). Thus fungi,
plants, and animals utilize the ~40 variations to optimum advantage in
different ways. All animals make optimum use of ~15 of these possibilities in
the same way, but insects as representatives of the invertebrates employ the
remaining ~25 optimally in different ways to vertebrates. Among all
vertebrates about 8 amino acids are optimized in the same way, leaving ~17 of
the ~25 to be distributed according to the kind of vertebrate, with the lamprey,
bony fish and birds + mammals employing the ~17 still adjustable amino acids
differently. Among birds + mammals, ~5 of the ~17 are optimized commonly,
leaving ~12 to take different forms in these two comparatively close cases.

All this is not to say that the various categories (a), (b), ... (h), or some of
them, did not have evolutionary connections, but that similarities and
dissimilarities of function are alone sufficient to explain the observed amino
acid differences. The situation is simply that plants, fungi, and animals
optimize differently. Among animals, the vertebrates and invertebrates
optimize differently. Among vertebrates, amphibians optimize differently from
animals that live either wholly on the land or in the sea. Among vertebrates
living on the land, those that are reptiles optimize differently from those that
are mammals, while, finally, among any particular one of the categories (a),
(b), ... (h), there is fine-tuning according to the detailed differences of
function that exist within each category. The essential point is that
similarities and dissimilarities of function, provided they introduce selective
factors s > 10* to 107 take control of the situation, determining the identities
of the changeable amino acids in a cytochrome-c chain. Evolution there may
have been, but memories of evolution are masked by selective necessities.

Phylogenetic trees for proteins such as cytochrome-c are invalid unless the
variable amino acids used for constructing the trees drift neutrally to within
107 to 107 in the selection factor for mammals and to even finer margins for
species with very large populations—invertebrates and plants. This would
imply that most amino acids of enzymic chains do not matter, an exceedingly
unlikely supposition in view of the mandatory character of the rest of the
amino acids. To argue that while a fraction of amino acid sites are crucial, the
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fraction ranging from about 1/3 for cytochrome-c essentially to 1 for histone-4,
to the extent that they cannot be varied at all, while the rest can be varied
freely without selective advantage or penalty appears quite unreasonable.

Besides which, there are three further objections, one a reductio ad
absurdum, another a flaw of logic, and the third a disproof by positive fact,
that rule protein phylogenies so far out of court that one must wonder at the
state of confusion which led to them ever being considered at all. Suppose we
accept that ~65 amino acids of cytochrome-c can drift without selective
control. Then (8.2) to (8.8) lead inferentially to the following schematic
evolutionary picture in which time is considered to advance in the sense
shown by the arrow, with evolution causing branchings to occur so as to lead
at the present moment to the groups (a), (b), ... (g), (h).

\\\

Present

@ ® © @ @ O @ (h) Species

The ordering of the branchings in the sketch, taken with the hypothesis
of random drift for -65 of the amino acids of cytochrome-c, requires that (a),
the first group to peel away from the others, shall show the greatest number
of amino acid differences from the other groups. Omitting (a), (b) will then
show the greatest number of differences, and so on, in the same order as the
decreasing numbers on the right-hand sides of (8.2) to (8.8).

What this view of events does not explain, however, is why the
differences between (a) and (b), (¢), ... (h) should all be essentially the same,
why the differences between (b) and (c), (d), ... (h) should all be essentially
the same, and so on. Additionally for this, we would have to assume that
random drift of the variable amino acids has occurred at the same absolute
time rate for all the species of (b), (c), ... (R). Then it will not matter which
species from (b), (c), ... (h) we choose, its total of amino acid difference from

-




muaviviniavivy “ nHyveauvivi

(a) will be the same to within statistical fluctuations. Similarly for the
difference between (b) and any species taken from (c), (d), ... (h). And so on,
through the sequence (8.2) to (8.8). But the trouble for this interpretation of
(8.2) to (8.8) is that mutations occur with respect to generations, and
generations do not relate uniquely to time. Among mammals there is more
than a tenfold difference of generation interval between mice and rabbits on
the one hand and horses and shrimp on the other. Variations of generation
length can be as much as a hundredfold among insects, while yeast and some
other fungi have generation lengths which are minute compared with most
other species. Yet the constant differences in (8.2) to (8.8) hold good to
margins of as little as 10 percent for the larger numbers and to about
20 percent for the smaller numbers, an impossibility for even twofold or
threefold variations in generation intervals, which are common. This is a
reductio ad absurdum so evident that protein phylogenies should surely have
been instantly dismissed on this ground alone.

Possibly worse still, protein phylogenies lack proper causality. Mutations
between branchings are assumed to have stayed the way they were at the
moment they occurred. A mutation that occurred, for example, during the
time intervals between the branchings of (c¢) and (d), is assumed to be
possessed by all species in (d), (e), ... (h). But the amino acid in question may
have changed again for some of the species in (d), (e), ... (h), changing in
different ways for different species. When numbers of mutations are few
compared to the number of changeable amino acids, this objection would not
be serious, it would be a second-order effect. But for cytochrome-c, where
essentially all amino acids that are changeable have been changed in one
species or another, multiple mutation at the same amino acid site are not
necessarily of second order.

The only data available for constructing a phylogenetic tree are of course
the variations found in present-day species. Even if there has been a tree of
the assumed type, present-day data are insufficient to reconstruct it. This is
well recognized, and what is usually done in order to obtain a unique tree is
to choose the branches and the numbers of mutations associated with them
by a minimum criterion of some kind. What does not seem to be so well
recognized is that because of repeated mutations the method is invalid when
used, as in the case of cytochrome-c, over long time intervals. The original
situation, if it existed, is irrecoverable, just as a system of differential
equations is not soluble when the boundary conditions are incomplete.

rroiéin ruylogenies—>uaore iiisions

The third objection is straightforwardly practical. Hemoglobin consists
of four copies of the hem- group of about a hundred atoms, featuring iron
prominently, held in a tetrahedral-like structure by four chains of amino
acids. Of the four chains in mammals, two consist of o-hemoglobin with 141
amino acids and two of B-hemoglobin with 146 amino acids. Both the o1 and
B forms have existed throughout the evolution of mammals and, if a phylo-
genetic tree could validly be constructed from the amino acid chains of
proteins, one should evidently obtain an indirect tree from the o and B
forms. With the same tree, and with mutations occurring at an assumed
constant rate with respect to time, amino acid differences between one
mammal and another should be the same to within a normalization factor of
order unity for a-hemoglobin as for B-hemoglobin.

Table 8.1
Matrix Showing Differences Between Mammalian Species for

Hemoglobins o and B: 3

Human Mouse Rabbit Dog Horse Cow

Mouse X X ‘ ' ‘
Rabbit X X X ‘ @ ‘
28
X X X X
Dog 28
Horse X X X X X ‘
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But there is no normalization factor of order unity that brings the numbers
shown in the table on page 133 into consonance with each other. These
numbers are a direct and obvious disproof of the whole concept of protein
phylogenics.

Although phylogenies using proteins have been mainly featured and
emphasized in evolutionary literature, phylogenies using DNA are
increasingly being investigated. Such phylogenies are open to just the same
criticisms If they include base pairs that can be of selective relevance. But
variations contingent on the redundancy of the genetic code should
genuinely satisfy the postulate of neutrality and so be a satisfactory source of
evolutionary data. Redundant DNA, not giving rise to expressed proteins,
may also be expected to drift neutrally, although phylogenies extending over
long time intervals are not secure even for redundant DNA, since DNA that
is presently redundant may not always have been unused.

~ Summary and Conclusi

The present essay has been concerned wit
evolution in the small, with the effects of natut:
selection on point mutations occurring among a
fixed aggregate of genes, the classical neo-

Darwinian situation. When genes are tied to

each other, as they are when reproduction from
generation to generation follows an asexual
binary fission model or a budding model, there

can be no positive evolution. Rarer
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advantageous mutations are swamped by more frequent deleterious mutations.
The best that natural selection can do subject to a specified environment is
the hold the deleterious mutations in check. When the environment is not
fixed there is a slow genetic erosion, however, which natural selection cannot
prevent. To avoid this slow erosion, organisms like bacteria that propagate
asexually must spend lengthy periods in deep hibernation, taking up an
inactive phase which may involve the production of spores.

Eucaryotic organisms typically possess sexual cycles at primitive levels
and propagate sexually at higher levels. Together with the phenomenon of
crossovet, sexual cycles and sexual propagation uncouple mutations on
different genes. Provided two genes are not sited close together on the same
chromosome, mutations occurring to them can be regarded as becoming
uncoupled in a few tens of generations. Even genes sited adjacently on the
same chromosome separate in a few thousand generations. This is still much
shorter than major evolutionary time scales. The important effect of
uncoupling mutations is that natural selection can then promote
advantageous changes as well as keeping the more frequent deleterious
mutations in check, a desirable result tempered, however, by two
considerations. With mutations uncoupled, natural selection cannot turn
back deleterious mutations if they are very small, and over a long time a large
number of small disadvantages escalate to a serious handicap. This long-term
inability of natural selection to preserve the integrity of genetic material sets
a limit to its useful life, a limit estimated in Chapter 5 to be some 106 to 107
generations. Over long periods, a species must either acquire new undamaged
genetic material or decline occurs. Redundant DNA may be an accumu-
lation of genetic material that exceeded this limit at times in the past and
which has now become discarded.

The second consideration of fundamental importance in a sexual model
is that half the genes of two parents are discarded in a generally random way
at the birth of every offspring, a roll of the dice situation that inevitably leads
to stochastic effects which cause most small advantageous mutations to be
lost. This loss, perhaps surprisingly, does not prove a particularly serious
difficulty for large populations and for mutations that do not involve
changing more than one base pair on the DNA of a gene. Subject to this
crucial condition, an advantageous mutation can be discovered and
rediscovered often enough for it eventually to run the gauntlet of stochastics
and for it to penetrate and become fixed in a species.

Sidary diid LORGIII0HY

For populations exceeding 10 individuals among whom mating occurs
at random, the limitation on positive evolution is set by opportunity, not by
the cost of selection as some investigators have maintained. Opportunity
consists of improved adaptations to an environment that can be achieved by
only a single base-pair change on the DNA. Should two or more base-pair
changes be required before an advantage can occur, even large populations
are unlikely to discover it. Thus opportunity exists only when genetic
material is already very close to an improved state. Examples arise in
fluctuating environments, because a form of gene that is an advantage in
one environment can become a disadvantage in another. An environmental
change can sometimes make it desirable to knock a working gene out of
action, and a single sensitive base-pair change may be sufficient for this,
thereby creating an opportunity of recovery were the environment to return
to its original state. An environmental oscillation between light and dark
trees for the peppered moth was the example considered in Chapter 6.

The ability of species to adapt by changing one base pair at a time on
any gene, and to do so with comparative rapidity if selective advantages are
reasonably large, explains the fine details of the matching of many species
to their environment. It was from the careful observation of such matchings
by naturalists in the mid-nineteenth century that the Darwinian theory
arose. Because the observations were made with extreme care, it was highly
probable that immediate inferences drawn from them would prove to be
correct, as the work of Chapters 3 to 6 shows to be the case. What was in
no way guaranteed by the evidence, however, was that evolutionary
inferences correctly made in the small for species and their varieties could
be extrapolated to broader taxonomic categories, to kingdoms, divisions,
classes, and orders. Yet this is what the Darwinian theory did, and it was by
going far outside its guaranteed range of validity that the theory ran into
controversies and difficulties which have never been cleared up over more
than a century.

While it is a good plan to attempt to apply new ideas as widely as
possible, there were several reasons for misgivings even at the outset to which
more attention should have been paid. The argument given a quarter of a
century earlier by Edward Blyth, an argument which really proved that
species cannot adapt outside fairly narrow limits was side-stepped instead of
being answered. There was also the difficulty that the fossil record did not
support Darwin’s concept of major changes, as for instance from reptiles to
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mammals, being achieved by very many small steps. Interesting discoveries
were indeed made in the fossil record, but they only represented adaptations
of established orders, not the larger connections which should have been
there if the theory were fully correct. The presentation of discoveries to the
public was heavily biased to emphasize the pros and hide the cons, a process
much aided by the founding in 1869 of the weekly science magazine Nature,
a magazine which has always seen the presentation of the Darwinian theory
in the most favourable light as a primary objective.

The problem of speciation was necessarily difficult in the nineteenth
century. What is it that permits a group of individuals, which commonly we
describe as forming a species, to mate successfully generation after
generation, while a somewhat wider group of still-similar individuals cannot
do so? We know today that the two chromosome sets denoted in Chapter 2
by P and M, which an individual obtains from its male and female parents
respectively, must be sufficiently alike for (2P, 2ZM) to be arranged into
quartets, (2p, 2m), that can be matched with sufficient accuracy for crossover
followed by successive cell divisions to take place. If P differs by more than a
small amount from M, the complex process of meiosis goes wrong. There is
the very major difficulty for evolution in the large that the chromosomes of
widely separated taxonomic groups are very different—reptiles are very
different from mammals. So how did the chromosome structure of reptiles
change into that of mammals? If we say by internal mutations, many small
steps would be needed, since a large change of structure occurring in one step
to one individual would be sterile, because it would be unmatched in
individuals of the opposite sex. Indeed, any such large change would have
small probability in the first place, and the further chance of a contemporary
member of the opposite sex possessing just the same internally generated
large change would be much smaller still. The consequent need to multiply
minuscule probabilities rules out large spontaneous changes of chromosome
structure, leaving only the alternative of very many small changes. Many
changes should be traceable in the fossil record, which they have not been.

The concept discussed in Chapter 6 of an externally incident genetic
storm overcomes this difficulty, because both the chromosome sets P and M
are exposed to the same external source of change. Both males and females
are acted upon in the same way, and although for any particular mating
couple the chance of P and M being altered by external attack in an
advantageous way may be small, the small chance is not squared. Given a
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sufficient number of couples in a large enough population and an
advantageous change will happen sooner or later, especially as genetic
storms probably continue for ~10° generations. Hence the total number of
couples exposed to change is ~10°N, a large number, permitting even very
unlikely alterations to P and M to happen, should they lead to a viable
organism. Large changes to P and M separate the offspring of a mating
couple immediately from their ancestral stock, and if several such changes
occur, the ancestral stock becomes fragmented into nonmiscible branches,
branches sterile with respect to each other. Only organisms in the same
branch can mate successfully so that the fragmentation is a one-way process.
Having happened, there is no turning back. The same process operating on
a much less drastic scale than fragmentations into classes and orders can
ultimately explain the appearance of species. This picture is strongly
supported by the mathematical discussions of previous chapters, which
showed that changes involving a multiplicity of base pairs can never be
discovered by internal mutation. Changes even much smaller than those
just discussed cannot arise spontaneously.

Since we are biological creatures, it might be expected that physical
things would exist to serve biological things. Yet the odd thing about present-
day society is that its physical activities appear purposive and its biological
activities only weakly so. Few among us have any real idea of what we are up
to, biological speaking, except to say that we work at a job to “earn a living,”
or that we are “bringing up a family,” or in the case of the young that we are
preparing to find a job to earn a living, or to find a partner to bring up a family.
Frankly speaking now, just the same protestation could in principle be given
by a cow munching in a field. Migratory birds moving with the seasons, often
with great inherent skill and seemingly with considerable knowledge of
geography, could be said to display a superior sense of purpose, which is
perhaps why so many humans are fascinated by the practice of bird-watching.

What is evidently missing from present-day society is biological
knowledge of the same high quality as the physical knowledge which at
present guides our activities, but which by itself can only be aimless. The
major reason, I believe, why biological knowledge has so far had little impact
on society is that it has no proper foundation. The mistaken extrapolation
from evolution in the small to evolution in the large that followed the
Darwinian theory of 1859 led society into a bog which has only grown deeper
with the passing years.
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Just as our physical knowledge is expressible in mathematical form, so
must biological knowledge if it is ever to have a real impact on society. Here
I can only give a few hints of what might be possible. It is against the
constraint of the population number N sustainable by the environment that
selection and evolution take place. Humans differ from all other animals in
that N depends to a major degree on knowledge. That possessed by Stone
Age humans was sufficient to maintain a total population estimated to have
been about 10°. Modern knowledge, on the other hand, could probably
sustain a world population of 101°, an immense difference. While the
dominant component of knowledge to this point has been how to grow food
under controlled conditions and how to manufacture articles with
concomitant access to large sources of energy, the psychological attitude of
humans to themselves is beginning to affect “knowledge” and so to become
a part of our environment.

Psychological attitudes have led in the present century to a new and
potentially important development in Western Europe, namely to N taking
a value appreciably less than the population could have been if numbers had
been pressed to their logistic limits. A consequence is that the juvenile
population M is no longer much larger than N, a situation which led quickly
to the modern concept of a compassionate society. If this concept is not to
be a temporary notion, it is essential that N be prevented from rising
anywhere near its logistic limit. One can say that the potential for humans
to control their environment is determined by the extent to which N is kept
below the logistic limit, N say. For N appreciably less than N the potential
for compassion is great, for N approaching N compassion becomes difficult,
while for N = N no compassion at all is possible, since N = N implies a return
to the raw biological conditions that obtain for most species, and which have
obtained for humans throughout most of their history.

The circumstance that at the birth of every offspring a half of its two
parents’ genes are discarded creates the possibility that biological knowledge
can be at least as crucial to our environment in the future as physical
knowledge has been in the past. At present and throughout history, the
discarding process happens essentially at random. But let random discarding
be replaced by controlled discarding and everything would be changed. The
need for juveniles to be perpetually sacrificed in order to maintain the
genetic integrity of our species would disappear. The discarding of genes at
random in the production of gametes must continue of course, but the choice
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of which gametes fertilize to produce offspring need not be at random. Only
gametes with fewer than the average number of genetic defects need be
fertilized, so that only offspring with less than the average number of defects
are born. None would then need to be sacrificed. Indeed, by exercising
choice over which gametes fertilize and which do not, all present defects
could be eliminated from the human species in only a few generations.
Human abilities show a spread nowadays between those individuals who are
abnormally good at some activity, whether physical or mental, and those who
are abnormally bad. The effect over a number of generations of removing all
defects would be to put everyone in the abnormally good category, and to do
so for every activity. There would be a complete removal of the hitherto
sustained misery of those who are born handicapped, the latter being a
necessary consequence of the present situation in which bad genetic choices
are as likely as good choices, with a weeding out of the bad being left to the
sufferings of unfortunate individuals.

Granted that the whole genetic complement of the human species is
made to work in everybody at more or less maximum efficiency, what then?
Would we wish thereafter to become genetically fixed, a complex example of
a living fossil? Presumably not. But the natural alternative of submitting
ourselves to random genetic explosion in the next genetic storm to invade the
Earth does not appear attractive either. Rather would our instincts be to shield
ourselves in some way or other from the effects of serious disease, let alone
from the full consequences of a major genetic storm. The remaining
alternative for change is to splice new genes into our DNA in a controlled
way, a possibility that modern genetic engineering brings into range. To many,
such a possibility arouses distraught visions of Frankenstein’s monster. There
would certainly be no shortage of opponents to it. In the respect that nobody
in authority today seems to have much grip on what they are doing, I would
share this fear. But not logically. If it were clearly demonstrable that one could
acquire a new gene with little fuss and bother that provided immunity against
the common cold, I for one would be glad to have it. Cancer may possibly arise
from an immunity problem, and if a new gene providing immunity against
cancer were available most people I suspect would be only too glad to acquire
it. The problem lies not in the aim but in our present-day lack of knowledge,
just as it did for centuries in the physical sciences.

We saw in Chapter 5 that the amount of expressed DNA in mammals
is very likely limited by the pressure of deleterious mutations, by the factor
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g exp —A. With this pressure removed in humans, through control over choices
of gametes, the total of expressed DNA could be increased without penalty,
thereby opening the road to evolutionary attainments that otherwise would
be unreachable. Such a development would evidently be a very long-term
affair. Yet to so questing an animal as the human, it is important to conceive
that the road to an eventually much superior status is not irrevocably
blocked, as it would appear to be so long as random choices of gametes
continue to rule the day.
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“So, | said, let’s calculate....”

Cosmologist Fred Hoyle applies his prodigious
mathematical talent to the problem of evolution.
Professor Hoyle has had a distinguished
career as a theoretical physicist, writer and
researcher, At the University of Cambridge,
he was a lecturer in mathematics before he
was made Plumian professor of astronomy and
experimental philosophy in 1958. He founded
and was the first director of the Cambridge
Institute of Theoretical Astronomy in 1967,
was named an associate member of the
American National Academy of Sciences in
1969, and has been an honorary professorial
fellow at University Gollege, Cardiff, since
1976. He has heen awarded many honors and
was knighted in 1972. Sir Fred Hoyle has
shown himself to he a gifted scientist and writer
who is willing to address fundamental problems
and to challenge established ideas in science.
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