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Abstract. This is a survey of results related to the Gödel incompleteness
theorems and the limits of their applicability. The first part of the paper
discusses Gödel’s own formulations along with modern strengthenings of
the first incompleteness theorem. Various forms and proofs of this theorem
are compared. Incompleteness results related to algorithmic problems and
mathematically natural examples of unprovable statements are discussed.
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1. Introduction

The Gödel incompleteness theorems are a universally recognized achievement
of the mathematical thought of the 20th century. They laid the foundation of
mathematical logic. Methods created by Gödel were decisive factors that led to
a precise mathematical definition of algorithm, and ultimately to the creation of
computers.

At the same time, by their very nature Gödel’s theorems touch upon questions
going far beyond mathematics proper and connected with topics exciting the imagi-
nation, like the mystery of the nature of the human mind, and problems of cognition
and artificial intelligence. In this capacity Gödel’s theorems, or rather their inter-
pretations, played a significant role in shaping the general intellectual context of
the 20th century. As a result, Gödel’s theorems are among those mathematical dis-
coveries of the past century which became most widely known outside mathematics
itself.1

A vast literature has been devoted to Gödel’s incompleteness theorems, from
quite specialized to pedagogical, popular scientific, and aesthetic. In particular,
such worldwide bestsellers as Gödel, Escher, Bach : the eternal golden braid by
Douglas R. Hofstadter or The Emperor’s new mind and Shadows of the mind by
Roger Penrose, belong to the last category. The sea of information devoted to
Gödel’s theorems mainly contains expositions of these theorems that are accessible
to a rather broad circle of readers (primarily of his first theorem, which is simpler).
In a sense, the very nature of these results makes it possible to subject Gödel’s
ideas to boundless variation and adapt them to the taste of any particular author.

In this survey we do not aim to give yet another popular presentation of Gödel’s
theorems. We would like to fill a gap of another kind, namely, to acquaint the
reader with modern generalizations of Gödel’s incompleteness theorems — first and
foremost, his second theorem —and with diverse and subtle mathematical problems
around these results.

Since Gödel’s theorems belong to the classics of mathematical logic, we do not
go into all the details of proofs which are sufficiently well known in various forms.
Instead, we focus on a search for and discussion of optimal formulations of Gödel’s
results, and also on comparisons of different proofs. In connection with the question
of the limits of applicability of Gödel’s incompleteness theorems, we present results
which have accumulated in mathematical logic, including very recent ones.

The survey divides naturally into two parts, devoted to Gödel’s first and second
theorems, respectively.

An appropriate context for the first theorem was created by the development
of the theory of computable functions, and the role of this theorem became rather
understandable in the framework of this theory. However, the second theorem
does not lie completely within this context and is more problematic on the whole.
Initially, the prevailing opinion was that Gödel’s second theorem is a kind of ‘supple-
ment’ to the first theorem that only indicates an explicit form of a quite independent
statement whose existence is asserted in the first theorem. To some extent, this
point of view is widespread even now.

1Implicit evidence for this assertion is that Kurt Gödel was named, justly or not, as one of
Time Magazine’s hundred most influential people of the 20th century.
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At the same time, after the works of Kreisel, Löb, Feferman, de Jongh,
Smoryński, and others who studied generalizations of Gödel’s second theorem, it
became clear that the nature of these two statements is substantially different.
Gödel’s second theorem turns out to be mainly connected with modal logical
properties of the formula expressing provability, and with the self-reference effect
in arithmetics.

In our opinion, it is still too early to decide definitively what the ‘correct’ con-
text for Gödel’s second incompleteness theorem is. At the same time, many partial
results have accumulated in this area which clarify the role and the specific fea-
tures of this theorem. We intend to acquaint the reader with the results and open
problems remaining here in the second part of our survey.

In the first part we discuss Gödel’s first theorem and its diverse forms. This
material is quite traditional, but we decided to include a fairly detailed survey of it
for two reasons. First, the problems connected with Gödel’s second theorem can be
evaluated in full measure only after having formed a very clear idea about various
aspects of the first theorem. At the same time, many of the existing presentations
of this material are often too one-sided. Second, in the literature one can find many
different assertions referred to as a Gödel theorem, not to mention different proofs
of these assertions. We would like to systematize this material, at least partially,
by considering it from some unified position.

I would like to thank Vladimir Andreevich Uspenskii and Albert Visser for dis-
cussions of some of the problems considered here and Sergei Ivanovich Adian for
attentive reading and criticism of the manuscript. Their works had also significantly
influenced the opinions of the author that are reflected in this survey.

2. Gödel’s first and second incompleteness theorems

In the fundamental paper [1], Gödel proved his theorems for a certain formal
system P related to Russell–Whitehead’s Principia Mathematica and based on the
simple theory of types over the natural number series and the Dedekind–Peano
axioms. At that time, Principia Mathematica was perhaps the most well-known
system of axioms intended for the formalization of mathematics. Gödel also
explained that his result can be extended to other axiomatic systems, including
Zermelo–Fraenkel set theory, von Neumann set theory, and other theories
“developed recently by D. Hilbert and his disciples.” We do not present a precise
definition of the system P , the formulation of which is somewhat cumbersome.
Stronger results will be obtained for the language of first-order arithmetic which is
standard nowadays.

The simplest formulation of Gödel’s first incompleteness theorem asserts that
there is a sentence which is neither provable nor refutable in the theory P under
consideration. Gödel’s second incompleteness theorem asserts that for this sentence
one can take a formalization in P of the statement that the theory P itself is
consistent.

The incompleteness of theories like P (or set theories especially created for the
axiomatization of the whole of mathematics) drastically contradicted the opinions
prevailing at that time. Moreover, Gödel’s second theorem placed in doubt the
possibility of realizing the most important thesis of the so-called Hilbert programme
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(see [2]), whose proclaimed objective was to establish the consistency of mathemat-
ics (analysis and set theory) by using finitary tools. This problem was regarded by
the representatives of Hilbert’s school as the central problem of mathematical logic.
However, it follows from Gödel’s second theorem that it is impossible to formalize
the ‘finitary tools’ that are able to establish the consistency of mathematics even
in the framework of a very strong system P .2

In principle, the incompleteness of some specific theory, say, of P , can mean
only that some necessary axioms “were not taken into account.” (For example, this
was the case for a long time with the axiomatization of elementary geometry.) To
show that, in the present case, we face a substantially different and more dramatic
situation, Gödel formulates his first theorem in a more general form, which speaks
of the fundamental incompletability of the system P .

Keeping the meaning sufficiently close to the original formulation, we can state
Gödel’s first incompleteness theorem ([1], Theorem VI) as follows.

Theorem 1. Let T be a formal theory satisfying the following conditions :
(i) T is formulated in the language of P ;
(ii) T is obtained by adding a primitive recursive set of axioms to the system P ;
(iii) T is ω-consistent.

Then T is incomplete, that is, there is a sentence ϕ for which neither ϕ nor ¬ϕ is
provable in T .

Let us clarify the notions used here and the conditions (i)–(iii) themselves. It
should be noted immediately that none of these conditions is the most general or
the most natural mathematically from the modern point of view. (The reasons for
this are briefly discussed below; see also the corresponding remarks in [3] and [4].)
However, these conditions are of interest: they reflect the initial perception by
Gödel of his discovery in 1931, and moreover, the use of these conditions was to a
significant degree fixed in the subsequent literature.

The condition (ii) involves the notion of primitive recursive function.

Definition 1. A function f : Nk → N is said to be primitive recursive if it can be
obtained from the constant 0, the successor function S(x) = x+ 1, and the projec-
tion functions Im

n (x1, . . . , xn) = xm by using the composition operation (substitu-
tion) and primitive recursion. A function f is said to be obtained from g and h by
primitive recursion if {

f(0, ~x ) = g(~x ),
f(n+ 1, ~x ) = h

(
f(n, ~x ), n, ~x

)
.

A set R ⊆ Nk is said to be primitive recursive if the assertion ~x ∈ R is equivalent
to f(~x ) = 0 for some primitive recursive function f . (As is customary in logic, we
shall represent the assertion that ~x ∈ R also in the form R(~x ).)

2Gödel expresses this fact in a curious way, apparently trying to avoid a philosophical contro-
versy: “It should be especially stressed that Theorem IX [the second incompleteness theorem] does
not contradict Hilbert’s formalistic point of view. Indeed, [. . . ] one can imagine that there are
finitary proofs which cannot be formalized in P .” Nowadays, it is customary to think that finitary
proofs can be formalized even in a much weaker first-order Peano arithmetic. At the same time,
there are alternative opinions concerning this question, originating from Hilbert himself (see [2]).
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The condition (ii) presupposes that some one-to-one encoding of the objects of
the language of the theory P by the natural numbers (a Gödel numbering) is fixed
in advance, where the objects include variables, terms, formulae, and so on. Gödel
proved that for some natural choice of this encoding the relation “x is the code of
the derivation of a formula with the code y in P ” is primitive recursive.

The condition (ii) means that the set of codes of the axioms of T for a chosen
encoding must be primitive recursive. Since T is constructed on the basis of P and
the deductive mechanism of P is primitive recursive, this implies that the relation
“x is the code of the derivation of a formula y in T ” is also primitive recursive.
The assumption (ii) is rather general and holds for all formal theories considered in
practice. Gödel noted that this condition certainly holds for all theories presented
by finitely many axioms or schemes of axioms. At present, it is customary to refer
to the theories satisfying the condition (ii) as primitively recursively axiomatized
theories.

Definition 2. A theory T is said to be ω-consistent if there is no formula ϕ(x)
(where the variable x ranges over the natural numbers) such that the following
conditions hold simultaneously:

(i) T ` ∃x ϕ(x);
(ii) T ` ¬ϕ(0),¬ϕ(1), . . . .

We recall that for the theories T in the language of P every natural number n is
represented by the closed term S(S(. . . S(0) . . . )) (n times), which we denote by n
and refer to as a numeral. We abbreviate a sequence of numerals (n1, . . . , n k) by ~n .

The condition of ω-consistency strengthens the consistency condition for a the-
ory T . In turn, this condition follows from the assumption that T is sound, that
is, all theorems of T are true in the model with the support N. However, Gödel
himself did not consider the semantic concept of soundness in his paper.

The condition (iii) is not essentially restrictive either, namely, the theories which
do not satisfy this condition can be regarded as theories close to being contradictory,
that is, as a pathological case. In fact, Gödel says that if the natural and broad
assumptions (i) and (ii) are satisfied, then we face a choice between two ‘unpleasant’
possibilities: either the theory T is incomplete or it is ω-contradictory.

As for the condition (i), it is rather restrictive. Natural theories certainly need
not be formulated literally in the language of P , for example, this is so for set
theory. In this connection Gödel notes in his comments to Theorem VI that, under
the conditions of the theorem, it suffices to assume instead of (i) that all primitive
recursive relations are decidable 3 (entscheidungsdefinit) in the theory T , and instead
of (ii) that the set of codes of the axioms of T is decidable in T .

Definition 3. A relation R is said to be decidable in T if there is a formula ϕR(~x )
such that

R(~n )⇒ T ` ϕR(~n ), (1)
¬R(~n )⇒ T ` ¬ϕR(~n ) (2)

for any tuple ~n of numbers.
3Different sources refer to this notion also as binumerability, representability, or definability in

the theory.
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The central point of Gödel’s proof was the theorem on the decidability in P of
all primitive recursive relations (however, Gödel proves this theorem only schemat-
ically).4 In particular, this enables him to express an independent statement for
the theory T in the form ∀x ϕR(x), where R is primitive recursive. The additional
idea of encoding finite number sequences by using the so-called Gödel β-function
(based on the Chinese remainder theorem) shows ([1], Theorem VII) that every
primitive recursive relation is equivalent (in P ) to some arithmetical formula, that
is, a formula of a first-order language in the signature with the constant 0, the
functions S, +, and · , and the equality relation. Thus, Gödel proved that the
independent statement constructed by him for the theory T relates to elementary
arithmetic, whatever the language of the theory T itself is.

Discussion. To appreciate the conditions of Theorem 1 from the modern point of
view, one must take into account the following facts.

First, the theory of computability, which gives the correct context for Gödel’s
first theorem, had not yet been created at that time. In fact, it was Gödel’s theorems
that to a great extent stimulated the creation of this theory: the notion of general
recursive function was introduced in Gödel’s 1934 lectures [5], and the equivalence of
this notion to the notion of an (everywhere defined) computable function was later
proved in other formulations by Church, Turing, and Kleene. Gödel himself noted,
in an addendum to the English translation of his paper in 1963, the important role
of Turing, thanks to whom “a completely general version of Theorems VI and XI
is now possible” (that is, of Gödel’s first and second theorems; see [6], p. 195).

Second, Gödel avoids using semantic notions, in particular, the notion of model
and the notions of truth and definability in a model. This is apparently related
to two circumstances. First of all, before Gödel’s paper, it was not quite clear
what the difference is between the notions of provability and truth for theories
like P . Moreover, the semantic notions in logic on the whole were under suspicion
due to paradoxes well known to everyone. The important paper [7] of Tarski,
which deals with the investigation of the notion of truth for formalized languages
(and which significantly reduced these suspicions), was published only in 1933 (and
in German in 1935). This can also explain the occurrence of the ω-consistency
condition instead of the more fundamental condition of semantic soundness. There
was also no rigorous notion of interpretation of one theory in another (this notion
was formed much later under the influence of Tarski’s works), and this deficiency
led, in particular, to restriction to theories in the language of P in the formulation
of the incompleteness theorems.

On the other hand, Gödel’s paper was written mainly counting on readers sharing
Hilbert’s opinion on the foundations of mathematics. This fact also influenced the
style and the choice of some formulations, to the detriment of more natural seman-
tic assertions. Gödel tried to show that the incompleteness theorems themselves
belong to finite mathematics and have no connection with anything irrational, with
the ‘illegal use of infinity’ or anything similar.

4A rigorous proof of this theorem was presented in the lectures given in 1934 for a certain
second-order theory which is related to the system P [5]. It is of interest that, thanks to the
presence of set variables in the language of P , the proof of this theorem for P is significantly
simpler than for the language of first-order arithmetic, which is customary at present.
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Third, in Gödel’s paper there is also no clear distinction between the notions of
theory and metatheory. Although the terms ‘metalanguage’ and ‘metatheory’ go
back to Hilbert, the fundamental property of these notions for the circle of problems
under consideration became clear thanks to Gödel’s paper and to Tarski’s paper
mentioned above.

Apparently, a correct reading of Gödel’s paper consists in an implicit choice of
the system P itself as a metatheory in which all meaningful statements in the paper
are formalizable. This is shown by a special formalized style of the formulations
of all statements in the paper (and a special font is used for the formal analogues
of meaningful syntactic notions), beginning with Theorem V on the decidability of
primitive recursive relations in P .5 Gödel himself notes in describing the scheme of
the proof of his second theorem that a significant part of the statements in the paper
are formalizable in P . Possibly, the choice of such a formal style of presentation
was dictated by the desire to help the reader believe that such a formalization is
possible.

Fourth, Gödel’s notion of decidability in a theory plays the role of a suitable
substitute for the semantic notion of definability. It stresses that this notion does
not appeal to the ‘contentual’ meaning (inhaltliche Deutung) of the formulae of
the system P . However, one can still see that this notion implicitly appeals to a
semantic interpretation of primitive recursive schemes, because the formula ϕR is
in fact constructed from a primitive recursive scheme defining R rather than from
the semantic relation expressed by R. It should be noted that Gödel identifies
primitive recursive functions and schemes, sometimes in a not quite correct way,
for example, when defining the level of a primitive recursive function (see also
Kleene’s comments about this). From a philosophical point of view, the semantic
interpretation of primitive recursive functions is simpler and more clear in a sense
than that for arbitrary formulae of the higher-order language of P .

In connection with the notion of decidability in the theory, another important
circumstance must be noted. Later analysis of this notion (see [8]) showed that
for the consistent primitively recursively axiomatized theories containing P (and
even the much weaker Robinson arithmetic Q), this notion is coextensive with the
notion of algorithmic decidability. Thus, a more general formulation of Gödel’s first
theorem (given by him as a comment on p. 190 of [1] 6) belongs in essence to the
same class of theories as the modern formulation considered in the next section.
Here let us consider a formulation of this comment more explicit than that used by
Gödel himself, for comparison with subsequent statements.

Statement 1 (Gödel’s comment). Let T be a formal theory satisfying the following
conditions :

(i) all primitive recursive relations are decidable in T ;
(ii) the set of axioms and the set of inference rules for the system T (that is,

the immediate consequence relation in T ) are primitive recursive or at least
decidable in T ;

(iii) T is ω-consistent.
5In his deep commentary [4] to Gödel’s paper, Kleene also notes this fact but does not explain

it, and refers to it simply as “Gödel’s propensity to speak in terms of his numbers.”
6The preceding remark by Gödel on p. 189 generalizes the condition of primitive recursive

axiomatizability to the decidability in T of the set of axioms of the theory T .
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Then T is incomplete.

Gödel does not specify here the language of the theories under consideration.
However, all three conditions, including (i), are formulated in terms of an abstract
‘immediate consequence’ relation and the corresponding notion of derivability. This
is very close to the abstract notion of a formal system treated as an algorithm
generating theorems of T originating from the axioms by the inference rules, the
set of which is primitive recursive (or at least decidable). Therefore, the choice
of a language does not play a great role in this case, provided that the notion of
decidability makes sense for the theory at hand.7 Of course, this notion was not
used by Gödel explicitly; recall that Gödel stressed the role of Turing and others in
the subsequent development of this notion.

We also note that Statement 1 can apply also to theories which are not enu-
merable. For example, for T one can take a first-order theory axiomatized over P
by all formula ∀x ϕ(x) such that ϕ(n ) is provable in P for any specific n ∈ N (a
single application of Carnap’s ω-rule; see [10]). Gödel himself did not consider such
theories in his paper. Nevertheless, they have been playing an important role in
investigations of the foundations of mathematics.

3. Modern formulations of Gödel’s first theorem

As a result of the emergence of a general notion of computable function in the
works of Gödel, Church, Turing, Post, and Kleene, it became clear that the class
of primitive recursive functions is less fundamental than the class of arbitrary com-
putable functions or the class of computably enumerable (c.e.) relations. Cor-
respondingly, it is natural to generalize the condition (ii) of primitive recursive
axiomatizability of a theory T in Gödel’s first theorem to the condition that the
set of theorems of T is c.e. This generalization extends the class of axiomatizations
under consideration but does not influence the class of theories under consideration,
because, as noted later by Craig [11], every c.e. first-order theory can be defined by
a primitive recursive set of axioms.

Apparently, Kleene [12] was one of the first to comprehend Gödel’s results from
the point of view of a more general computability theory. In fact, this early paper
of Kleene already contains the main ideas of the approach to Gödel’s theorems
based on the recursion theory developed by Kleene, ideas which lay at the base
of practically all subsequent investigations around Gödel’s theorems. In the same
paper Kleene gave a general recursion-theoretic version of the first incompleteness
theorem (in the semantic variant). From the point of view of the evolution of
the formulations, Kleene’s formulation occupies an intermediate position between
Gödel’s informal comments to his theorems and the more perfect abstract formu-
lations which can be found both in later works of Kleene himself [13]–[15] and in
works of others, for example, Smullyan [16] and Uspenskii [17].

7For first-order languages (or higher-order languages) containing names for natural numbers
the notion of decidability given by Gödel is quite rigorous. In the general case one can formulate
rather simple abstract conditions on the language for the notion of decidability to make sense in
the corresponding formal system. This leads, for example, to Smullyan’s notion of representation
system [9].
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On the other hand, Rosser [18] modified Gödel’s construction in such a way as
to establish the incompleteness of a theory T already under the assumption of its
ordinary consistency. This beautiful and stronger form of Gödel’s first theorem is
sometimes referred to as Rosser’s theorem or the Gödel–Rosser theorem. (Nev-
ertheless, Gödel’s original construction maintains its value in connection with the
proof of the second incompleteness theorem.)

The subsequent technical improvements of the first incompleteness theorem are
connected with a series of results of Kleene, Mostowski, Tarski, and R. Robinson.
In particular, using Gödel’s work, Kleene [13] and Mostowski [19] studied the rela-
tions defined in the language of first-order arithmetic and introduced a hierarchy
of arithmetical classes Σn and Πn.

Tarski initiated a systematic investigation of decidability problems for first-order
theories. In the framework of this programme, quite broad generalizations of
Gödel’s results were obtained in Tarski’s school. On the one hand, very weak
arithmetical theories were found, like Robinson’s arithmetic Q, for which essential
undecidability was established. The Gödel–Rosser theorem was thereby extended to
a broader class of theories. On the other hand, the method of interpretation devel-
oped by Tarski enabled one to extend these results to other languages different from
the arithmetical one. We note that one of the earliest and most beautiful results in
this direction was Quine’s theorem [20] establishing the mutual definability of the
elementary arithmetic of the natural numbers and the theory of concatenation of
binary words. In combination with the interpretation method, the Gödel–Rosser
theorem was one of the main tools of the proof of the algorithmic undecidability of
quite diverse theories.

After the publication of the fundamental monographs of Kleene [15] and of
Tarski, Mostowski, and Robinson [21] in the early 1950s, the presentations of
Gödel’s incompleteness theorems acquired their standard forms, which are very
close to the modern ones.

3.1. General formulations. Let us first give very general formulations of syntac-
tic versions of Gödel’s theorem and the Gödel–Rosser theorem for abstract formal
systems. These formulations have the advantage that they are applicable in many
situations and do not depend on the language of a theory. Moreover, they clarify
the computational essence of Gödel’s first theorem.

We begin with the definition of an abstract formal system.

Definition 4. By a formal system we mean a triple S = (L,P,R), where L ⊆ N is
the decidable set of all sentences of the system, and P,R ⊆ L are c.e. sets of provable
and refutable sentences, respectively. We assume that all three sets are given by
fixed algorithms (Turing machines) denoted by ML, MP , and MR.

We note that we have identified the formal objects of the system and their Gödel
numbers, and therefore the corresponding algorithms work on the natural numbers.
A system S is said to be consistent if P ∩ R = ∅ and complete if it is consistent
and P ∪R = L.

We note that if a formal system S is complete, then the sets P and R are
decidable (Post’s theorem). Therefore, to prove the incompleteness of S, it suffices
to establish the algorithmic undecidability of either of these two sets. The system S
is said to be decidable if P is.
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The undecidability of a system S follows from the existence on a c.e. undecidable
set and from the natural assumption that the system S ‘expresses’ in a sense all
c.e. sets. A quite general notion of expressibility can be defined for abstract formal
systems as follows.

Definition 5. A set A ⊆ N is said to be expressible in S = (L,P,R) if there is an
everywhere defined computable function f such that

n ∈ A ⇐⇒ f(n) ∈ P.

A system S is said to be universal for c.e. sets if all c.e. sets are expressible in it.

The notion of expressibility for formal systems is simply the notion, familiar in
the theory of algorithms, of m-reducibility to the set of provable sentences of S.
Every set expressible in a decidable system must be algorithmically decidable. Thus,
universal formal systems are undecidable and incomplete. This fact can be viewed
as an abstract version of Gödel’s first incompleteness theorem.

Theorem 2. If S is a formal system universal for c.e. sets, then S is undecidable
and incomplete.

The Gödel–Rosser theorem is based on another fact of the theory of computable
functions, namely, the existence of an inseparable pair of disjoint c.e. sets. We note
that to any ordered pair of disjoint sets A,B ⊆ N one can assign a partial function
g : N→ {0, 1} for which

g(n) =


0 if n ∈ A,
1 if n ∈ B,
undefined otherwise.

This correspondence between the pairs and the functions is one-to-one. Both sets A
and B are c.e. if and only if the function g is computable.

A system T = (LT , PT , RT ) is said to be an extension of S = (LS , PS , RS) if
LT ⊇ LS , PT ⊇ PS , and RT ⊇ RS . In this case the function gT corresponding to
the pair (PT , RT ) is an extension of the function gS .

A pair (A,B) is said to be (recursively) inseparable if the function g has no
everywhere defined computable extension g′ : N → {0, 1}. A formal system S =
(L,P,R) is said to be inseparable if the pair (P,R) is.

It follows from what was said above that inseparable formal systems are undecid-
able and incomplete, and so are any consistent extensions of these systems. Thus,
for a formal system inseparability is another sufficient condition for incompleteness.

Definition 6. A pair (A,B) is separable in a system S = (L,P,R) if there is a
computable function f such that{

n ∈ A⇒ f(n) ∈ P,
n ∈ B ⇒ f(n) ∈ R.

We say that S separates pairs of c.e. sets if every pair of disjoint c.e. sets (A,B) is
separable in the system S.
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Let ϕe(x) be the output of a Turing machine with the index e on the input x.
It is easy to see that the function

F (x) =


1 if ϕx(x) = 0,
0 if ϕx(x) is defined and ϕx(x) 6= 0,
undefined otherwise

(3)

is computable. However, it cannot have any everywhere defined computable exten-
sion. Indeed, suppose that a computable function g = ϕn is everywhere defined.
Consider m = g(n) = ϕn(n). If m = 0, then F (n) = 1, and if m 6= 0, then
F (n) = 0. In any case F (n) 6= m = g(n), that is, g does not extend F . Thus,
inseparable pairs of c.e. sets exist.

This implies the following abstract version of the Gödel–Rosser theorem.

Theorem 3. Let a formal system S = (L,P,R) be consistent and let it separate
pairs of c.e. sets. Then S is inseparable, and thus every consistent extension of S
is undecidable and incomplete.

This statement, as well as the notion of inseparable pair of c.e. sets, goes back
to Kleene’s paper [14], where it was called the symmetric form of Gödel’s theorem.

Remark 1. We note that Theorems 2 and 3 are very abstract, and their application
to specific formal systems arising in logic needs additional work (some examples
are considered below). Therefore, one should not literally identify these statements
with Gödel’s and Rosser’s theorems.

Remark 2. There are examples of non-enumerable theories for which even
the abstract formulations given above are not sufficiently general. Diverse
generalizations of these theorems, in terms of the so-called representation systems,
were considered in great detail by Smullyan [9]. Since the central point for us is
Gödel’s second theorem, we do not dwell on these results.

3.2. Languages, theories, and interpretations.

Logical languages. Applications of the abstract results in § 3.1 relate mainly to
formal systems arising on the basis of logical languages, and in particular, on the
basis of the language of first-order predicate logic.

We consider first-order languages and theories with equality. In essence, this
choice is not restrictive, because, as is well known, one can interpret richer languages
in languages of this kind by extending the signature.

First of all, one can interpret a many-sorted language by including in the signa-
ture one-place predicate symbols selecting new sorts of variables. Further, introduc-
ing a new sort of variables for the functions f and an additional operation ap(f, x)
whose value is the result f(x) of applying a function f to an argument x, we inter-
pret a second-order language with function variables. We can similarly interpret
predicate variables and also higher-order variables. Thus, the results presented
below can be applied to many-sorted theories and to higher-order theories. This
covers a significant part of those logical theories intended for the formalization of
mathematics that are considered in practice.
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Sometimes fragments of a first-order language are considered for which versions
of Gödel’s theorems also hold. In particular, languages with bounded quantifiers,
quantifier-free languages, and equational languages are of interest from this point
of view. The interest in such poor languages is connected first of all with the
question of how ‘simple’ Gödel’s independent assertion can be. On the other
hand, there is traditional philosophical and historical interest in the subject of
Hilbert’s programme and in the formalization of ‘finite mathematics’. In this con-
text, quantifier-free calculi play an important role.

Theories. By theories S we mean first-order theories with equality, that is, theories
defined by some signature Σ and a set P of formulae of this signature which is closed
under the logical successor (in the first-order predicate logic with equality). The
formulae of P are said to be provable in S.

A theory S = (Σ,P) is said to be computably enumerable (c.e.) if the signature Σ
is decidable and the set P is c.e. Since Σ is decidable, so is the set LΣ of all formulae
of the given language. When speaking about a c.e. theory S, we assume that some
Turing machines defining Σ and P are fixed.

As a rule, the Turing machine enumerating P is defined by the deductive mech-
anism of the theory S. For example, if S is given by a finite family of axioms
and inference rules on the basis of Hilbert’s predicate calculus, then corresponding
to this definition is a certain algorithm enumerating all possible derivations (and
derivable formulae) in S. However, in principle the mechanism enumerating the
theorems of S can be quite different. For example, S can appeal to non-deductive
decision procedures to clarify the truth value of various special classes of formulae
(say, by using an algorithm for solving equations if this turns out to be neces-
sary in the process of seeking a conclusion). By the way, mixed algorithms of this
kind are typical for computer systems now under intensive development for seeking
conclusions.

It is also well known that Hilbert’s standard derivation format is inconvenient
in many respects for practical work with formal derivations. In proof theory there
are developments of diverse alternative deductive systems which are convenient
for various applications, for example, Gentzen sequent systems, so-called natural
deduction systems, and others (see, for example, [22]). For Gödel’s first theorem,
the choice of a specific deductive mechanism does not play a large role.

By a Gödel numbering of formulae of the language of LΣ we mean a one-to-one
and computable (in both directions) correspondence between the set LΣ of for-
mulae and some decidable subset L ⊆ N. We note that in choosing some Gödel
numbering of the formulae of the language of LΣ, we assign some formal system to
the c.e. theory S. (A formula ϕ is assumed to be refutable in S if ¬ϕ is provable
in S. Since the operation ϕ 7→ ¬ϕ is computable, it follows that the set of refutable
formulae of a c.e. theory is also c.e.)

Formal arithmetic. Peano arithmetic PA is a first-order theory with equality in
the language containing the constant 0 and symbols for the successor function
S(x) = x + 1, the addition +, and the multiplication · . The standard model
of PA is the set N of natural numbers (with zero), considered together with all
these operations. The axioms of PA, along with the logical axioms and the equality
axioms, are
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P1. ¬S(x) = 0, S(x) = S(y)→ x = y,
P2. x+ 0 = x, x+ S(y) = S(x+ y),
P3. x · 0 = 0, x · S(y) = (x · y) + x,

together with the scheme of induction axioms

ϕ(0) ∧ ∀x
(
ϕ(x)→ ϕ(S(x))

)
→ ∀x ϕ(x)

for all arithmetical formulae ϕ(x) (possibly containing parameters, that is, free
variables besides x).

The Robinson arithmetic Q is obtained by replacing the induction scheme in the
formulation of PA by the following axiom (obviously derivable in PA by induction
on x):

x = 0 ∨ ∃y y = S(x).

The system Q traditionally plays a large role in strengthenings of Gödel’s theorems.

Interpretations. The notion of relative interpretation is well known for first-order
languages and theories (see, for example, [23]). Apparently, interpretations became
widely used in mathematical logic after Tarski’s works and after the publication
by Tarski, Mostowski, and Robinson of the monograph [21], where interpretations
were actively used to study decidability problems of logical theories.

Gödel’s theorems hold for languages and theories that are universal in a certain
sense. However, to speak of universality, we must be able to compare languages,
with one another, that is, to deal with some notion of interpretation. From this
point of view, sufficiently general formulations of Gödel’s theorems assume the use
of interpretation in a natural way.8

We shall use a rather broad notion of interpretation, which can be described
as the notion of multidimensional interpretation with definable parameters and
non-absolute equality relation (for the precise definition, see § 9). Interpretations
of this kind will simply be referred to as interpretations. The translation of a
formula ϕ under an interpretation I is denoted by ϕI .

When we fix some interpretation of the signature Σ1 in Σ2, we actually choose
in the language of Σ2 a new sort of variables that corresponds to objects of the
language of Σ1, and also the predicates and functions from Σ1 over these objects
(the expressive capabilities of the language of Σ2 remain the same here). Therefore,
we often speak of languages and theories as if these are many-sorted.

One of the central notions for our purposes is the notion of arithmetical theory.
By an arithmetical theory we mean a theory in which an interpretation of the
predicate calculus in the signature of PA is fixed. Informally, we may assume that
a special sort of objects is distinguished in the language of an arithmetical theory,
namely, the natural numbers, together with the usual arithmetical operations over
these objects. However, we do not assume a priori that any non-logical axioms for
these symbols are provable.

Remark 3. Anticipating, we note that in principle one can transform a theory into
an arithmetical theory in many ways, and this can influence the metamathematical

8Nevertheless, in most presentations of Gödel’s theorems this fact remains latent or is men-
tioned only on an informal level.
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properties of the resulting theory. Consider two standard formalizations of set the-
ory: the Gödel–Bernays formalization GB, and the Zermelo–Fraenkel formalization
ZFg, where ZFg is considered in the Gentzen sequent format without the cut-rule.
As is well known, one can choose an interpretation I of Robinson’s arithmetic Q
in the set theory GB in such a way that the consistency assertion for ZFg holds for
this interpretation, that is, GB ` Con(ZFg)I (about this see, for example, [24]). On
the other hand, this is not the case for the ordinary von Neumann interpretation J
of the natural numbers in set theory. Indeed, GB conservatively extends ZFg, and
this fact can be proved in Peano arithmetic PA. However, the axioms of PA are
valid under the von Neumann interpretation of the natural numbers in GB, that is,
GB ` PAJ . Thus, by Gödel’s second theorem, GB 0 Con(ZFg)J .

3.3. Σ1-definability. In the language of arithmetic the inequality x 6 y is usually
expressed as ∃z (z+ x = y). Let us add the predicate symbol 6 to the signature of
arithmetic and assume that the equivalence

x 6 y ←→ ∃z (z + x = y)

is another axiom of Q. In the language thus extended, one introduces as abbrevia-
tions the following bounded quantifiers:

∀x 6 t ϕ
def⇐⇒ ∀x (x 6 t→ ϕ),

∃x 6 t ϕ
def⇐⇒ ∃x (x 6 t ∧ ϕ),

where the term t does not contain the variable x. A formula ϕ is said to be bounded
if every occurrence of a quantifier in ϕ is bounded, that is, has the form ∀x 6 t ψ
or ∃x 6 t ψ. The set of all bounded formulae is denoted by ∆0.

The classes of Σn- and Πn-formulae are defined by induction on n as follows.
We regard the bounded formulae as both Σ0- and Π0-formulae. The Σn+1-formulae
are those of the form ∃~x ϕ(~x, ~y ), where ϕ is a Πn-formula. The Πn+1-formulae are
those of the form ∀~x ϕ(~x, ~y ), where ϕ is a Σn-formula.

The following fundamental theorem speaks of the coincidence of the classes of
c.e. and Σ1-definable sets in the standard model of N.

Theorem 4. A set A ⊆ Nk is c.e. if and only if

~n ∈ A ⇐⇒ N � ϕ[~n ]

for some Σ1-formula ϕ(~x ). Here the formula ϕ can be constructed effectively (in
polynomial time) from the Turing machine defining the set A, and conversely.

The essence of this theorem is that the language of arithmetical Σ1-formulae
which can be interpreted in N is a universal model of computations. In the sense of
this model a Σ1-formula defining the graph of a partial function can be regarded as a
program for computing this function, a program that can be constructed effectively
from the Turing machine defining the function.

Corollary 1. The set of all true Σ1-sentences is c.e. and undecidable. The set of
all true Π1-sentences is not c.e.
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Proof. The second part follows from the first by Post’s theorem, because the true
Π1-sentences effectively correspond to false Σ1-sentences. Let us prove the first
statement.

The enumerability of the set ThΣ1(N) of true Σ1-sentences follows from the fact
that there is an obvious algorithm for verifying the truth of a given ∆0-formula ϕ(~x )
on a given tuple ~n of arguments. An algorithm accepting exactly the true formulae
of the form ∃~x ϕ(~x ) for ϕ ∈ ∆0 exhausts all possible arguments ~n until the first
tuple validating ϕ is found.

Now let K ⊆ N be a c.e. undecidable set. Consider a Σ1-formula ϕK defining K
in N. For any n ∈ N we have

n ∈ K ⇐⇒ N � ϕK [n] ⇐⇒ N � ϕK(n ).

We note that the Σ1-formula ϕK(n ) can be constructed from n effectively. There-
fore, the question of whether or not n is in K reduces to the question of whether
or not the Σ1-sentence ϕK(n ) is true. Hence, the last question cannot be solved
algorithmically. This proves Corollary 1.

Gödel’s result on the arithmeticity of the primitive recursive relations was a
predecessor of Theorem 4. In fact, Gödel indicated a way to construct, from a
given primitive recursive scheme, a certain arithmetical formula which could be
called a generalized Σ1-formula. Feferman [25] refers to these as RE-formulae. The
formulae obtained by Gödel’s construction admit unbounded existential quantifiers
in the scope of a bounded universal quantifier. However, it could be noted that the
scheme of Σ1-boundedness

∀x 6 y ∃z ϕ(x, y, z) ←→ ∃u ∀x 6 y ∃z 6 u ϕ(x, y, z)

holds in the standard model of arithmetic, and this enables one to transform a gen-
eralized Σ1-formula to a Σ1-formula. Thus, Theorem 4 easily follows from Gödel’s
original construction.

The classes of arithmetical Σn- and Πn-predicates arose in papers of Kleene [13]
and Mostowski [19].

The notion of ∆0-formula and of the corresponding class of predicates on N
was introduced in the book [16] of Smullyan. Interesting independent characteri-
zations were later obtained for this class, in particular, in terms of the theory of
complexity of computations. At present, the class ∆0 plays an important role in
investigations concerning bounded arithmetic (see, for example, [26]). The applica-
tion of ∆0-definable and Σ1-definable relations instead of primitive recursive ones in
the proof of Gödel’s theorem makes it possible to avoid the unnecessary (in essence)
formalism of primitive recursive schemes and to work directly in the language of
arithmetic (see [16]).

Strengthenings of Theorem 4 connected with possible additional restriction of
the class of Σ1-formulae are well known. For example, the well-known Matiyase-
vich theorem, which was based on previous results of M. Davis, H. Putnam, and
J. Robinson and gave a negative solution of Hilbert’s tenth problem, asserts that
every c.e. relation is definable even by a formula of the form ∃~y A(~x, ~y ), where A is
an equality of two terms, that is, polynomials with natural number coefficients
(see [27] and [28]). We say that these formulae are Diophantine.
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The proof of Theorem 4 depends on the chosen model of computations in the
definition of a c.e. set. If Turing machines are used, then the problem reduces
to the construction of a ∆0-definition of the predicate T (e, x, y): “y encodes the
computation protocol of the machine with the index e on the input x.” This is even
simpler than a Gödel arithmetization of the provability predicate in PA, because
the rules of operation of the Turing machine are more elementary than the syntax
of first-order logic.

Using some technical inventions of Quine, Smullyan [16] developed one of the
simplest methods of arithmetization which enables one to avoid the use of both
Gödel’s β-function and the Chinese remainder theorem. Instead of Turing machines,
he considered another useful universal model of computations, namely, the so-called
elementary formal systems related to Post’s canonical systems.

3.4. Semantic version of Gödel’s first theorem. As we know, Gödel avoided
semantic notions when formulating his theorems. The semantic versions of Gödel’s
first theorem, which assert the existence of a true unprovable statement under cer-
tain conditions, have more natural formulations and simpler proofs. Two things are
necessary to pay for this simplicity. First, the syntactic versions of Gödel’s theorem
are stronger than the semantic ones as a rule. Second, we use a non-elementary
notion of truth value in a model. In particular, we cannot even formulate a semantic
version of Gödel’s theorem in the language of arithmetic.

As we shall see below, the syntactic versions of Gödel’s theorem can be obtained
from semantic ones by using an additional technical idea.

We recall that a theory is said to be arithmetical if an interpretation of the
language of Peano arithmetic is fixed in the theory. We may assume that the
language of arithmetical theories contains a distinguished sort of natural number
variables and all the symbols of the signature of arithmetic for this sort.

Definition 7. Let Γ be an arbitrary set of arithmetical formulae. An arithmetical
theory T is said to be Γ-complete if for any sentence A ∈ Γ we have

N � A =⇒ T ` A.

A theory T is said to be Γ-sound if the converse implication holds, that is,

T ` A =⇒ N � A

for any sentence A ∈ Γ. If Γ is the set of all arithmetical sentences, then the
theory T is said to be semantically complete and sound.

We note that the Γ-completeness of a theory is inherited by its extensions and
the Γ-soundness is inherited under passage to a subtheory. Since all axioms of PA
are true in the standard model, it is obvious that PA is sound and thus Γ-sound for
any Γ.

Lemma 1. Let T be an arithmetical theory.
(i) T is Σn+1-complete if and only if it is Πn-complete.
(ii) T is Πn+1-sound if and only if it is Σn-sound.

Proof. (i) If ϕ ∈ Πn and N � ∃~x ϕ(~x ), then N � ϕ(~n ) for some tuple ~n. If T is
Πn-complete, then T ` ϕ(~n ), and hence T ` ∃~x ϕ(~x ) by the rules of the predicate
calculus. The proof of (ii) is similar.
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Theorem 4 enables us to obtain Gödel’s first incompleteness theorem in the
following standard (semantic) formulation.

Theorem 5. Let T be a c.e. arithmetical theory.
(i) If T is consistent, then T is Π1-incomplete.
(ii) If T is at the same time Σ1-sound, then there is a Π1-sentence which is

unprovable and irrefutable in T .

Proof. Suppose that T is Π1-complete. Then by the preceding lemma, all true
Π1-sentences are provable and all false Π1-sentences (these correspond to the true
Σ1-sentences) are refutable in T . If T is consistent, then this implies that

N � ϕ ⇐⇒ T ` ϕ

for any ϕ ∈ Π1. Since T is c.e., this means that the set of true Π1-sentences is c.e.,
which contradicts Corollary 1.

Suppose that T is Σ1-sound and ϕ is a true Π1-sentence which is unprovable
in T . Then ¬ϕ is equivalent to a false Σ1-sentence, and hence T 0 ¬ϕ. This proves
the theorem.

We note that the assumption originally used by Gödel and asserting that T
contains the arithmetical axioms is absent in Theorem 5. In particular, the theorem
can also be applied to the pure theory of equality in the arithmetical language.
However, without additional assumptions we cannot assert that the theory T is
undecidable.

Example 1. Consider the model of the language of arithmetic with the support N
in which the symbols 0, S, and = have the ordinary meaning and the symbols x+y
and x · y are understood as max(x, y). Let T be the elementary theory of this
model. Of course, T is not sound (in the sense of the standard model), but it is
consistent and syntactically complete. Since max can be expressed by using < and
the elementary theory (N, <) is decidable, it follows that T is decidable as well.

This example shows that Theorem 5 is not a consequence of the above abstract
syntactic version of Gödel’s first theorem.

3.5. Σ1-completeness and the syntactic version of Gödel’s theorem. The
passage from the semantic to the syntactic version of Gödel’s theorem uses the prop-
erty of Σ1-completeness, which can be established for a broad class of arithmetical
theories.

Let us first specify the notion of expressibility (Definition 5) in the case of arith-
metical theories.

Definition 8. A set A ⊆ N is said to be representable 9 in T , or T -representable,
if there is a formula ϕA(x) such that

n ∈ A ⇐⇒ T ` ϕA(n ).

We note that T -representability of a set A implies its expressibility in T , because
the substitution function n 7→ ϕ(n ) is computable.

9This notion is also referred to as numerability in T , and the formula ϕA as a numeration of
the set A in T [25].
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Lemma 2. If a theory T is Σ1-complete and Σ1-sound, then every c.e. set is
T -representable.

Proof. Let A be a c.e. set and let ϕA be its Σ1-definition in the standard model in
the sense of Definition 4. Then it is clear that ϕA represents A in T . This proves
the lemma.

This lemma enables one to apply the above abstract version of Gödel’s first
theorem if the Σ1-completeness of the theory T is established.

We also note that for Σ1-complete theories the semantic condition of Σ1-sound-
ness can be replaced by a weakened version of Gödel’s condition of ω-consistency.

Lemma 3. A Σ1-complete arithmetical theory T is Σ1-sound if and only if for any
formula ϕ(x) ∈ ∆0 the following conditions do not hold simultaneously :

(i) T ` ∃x ϕ(x);
(ii) T ` ¬ϕ(n ) for all n ∈ N.

The condition in the lemma is usually called 1-consistency of the theory T .
It remains to find sufficient conditions for the Σ1-completeness of an arithmetical

theory. To this end, it is sufficient to indicate some Σ1-complete theory which is
as weak as possible. It is customary to mention Robinson’s arithmetic Q or even
the weaker theory R as such a theory (this tradition goes back to the monograph
of Tarski, Mostowski, and Robinson [21]). The theory Q is stronger than R, but it
is given by finitely many axioms.

Theorem 6. The theory Q is Σ1-complete.

The idea of proving the Σ1-completeness is simple, namely, the truth value of
any ∆0-statement ϕ can be effectively verified. In essence, this verification is a
proof of ϕ in Q if ϕ is true, or a disproof of ϕ if ϕ is false. In fact, for this it
is sufficient to show that some simple facts involving specific natural numbers are
provable in Q.

Lemma 4. The following formulae are provable in Q:
R1. m+ n = m+ n;
R2. m · n = m · n;
R3. ¬(m = n ) if m 6= n;
R4. x 6 n ↔ (x = 0 ∨ x = 1 ∨ · · · ∨ x = n ).

By this lemma one easily proves completeness of Q with respect to ∆0-sentences,
which implies also Σ1-completeness by Lemma 1.

We refer to the theory in the language of arithmetic extended by the symbol 6,
axiomatized by all formulae of the form R1–R4, as Robinson’s weak arithmetic R0.
Thus, Σ1-completeness also holds for all extensions of R0. This gives the following
corollary.

Corollary 2. Let T be a Σ1-sound theory containing Q (or even R0). Then all
c.e. relations are T -representable.

Theorem 2 implies the following theorem, which can be regarded as a standard
syntactic formulation of Gödel’s first incompleteness theorem.

Theorem 7. Let T be an arithmetical theory such that
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(i) T contains Q (or even R0),
(ii) T is c.e.,
(iii) T is Σ1-sound (or 1-consistent).

Then T is undecidable and incomplete.

We note that the conclusion of this theorem is stronger than the second part of
Theorem 5, because we assert in addition that T is undecidable.

One can easily derive the second part of Theorem 5 from Theorem 7. If T is
Σ1-sound, then so is the extension of T by all the axioms of R0 (the axioms of R0

are quantifier-free), and Theorem 7 can be applied to this extension.
We also note that Corollary 2 can be established for all consistent theories T [8].

3.6. Gödel–Rosser theorem. The abstract version of the Gödel–Rosser theorem
is based on the property that the theory T separates any pair of disjoint c.e. sets.
To prove this property, the following lemma is needed.

Lemma 5. For any n ∈ N the formula

n 6 x ∨ x 6 n

is derivable in Q.

We denote by R the extension of R0 by these formulae for all n. Thus, R is
contained in Q. The following lemma asserts that the theory R, and hence also the
theory Q, separates every pair of disjoint c.e. sets.

Lemma 6. Let A,B ⊆ N be disjoint c.e. sets. Then there is a Σ1-formula ϕ(x)
such that

(i) n ∈ A⇒ R ` ϕ(n ),
(ii) n ∈ B ⇒ R ` ¬ϕ(n )

for any n ∈ N.

Proof. By Theorem 4, there are ∆0-formulae A0 and B0 such that

n ∈ A ⇐⇒ N � ∃x A0(n, x),
n ∈ B ⇐⇒ N � ∃y B0(n, y).

For any formula C and any term t we write

∀x < t C(x)
def⇐⇒ ∀x 6 t

(
x = t ∨ C(x)

)
.

We now set
ϕ(z)

def⇐⇒ ∃x
(
A0(z, x) ∧ ∀y < x¬B0(z, y)

)
.

Informally, ϕ(z) asserts that the work of the algorithm receiving the set A on
the input z is terminated earlier than the work of the algorithm receiving B is
terminated (‘Rosser’s witness comparisons’).

If n ∈ A, then the formula

A0(n,m ) ∧ ∀y < m¬B0(n, y)
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is true for some m. By the Σ1-completeness of the arithmetic R, we see that this
formula is provable in R, and hence R ` ϕ(n ).

If n ∈ B, then the formula

B0(n,m ) ∧ ∀y 6 m¬A0(n, y) (4)

is true for some m. Since R is Σ1-complete, we see that this formula is provable in R.
This implies that R ` ¬ϕ(n ). We clarify this assertion by the following reasoning,
which can readily be transformed into a formal derivation of a contradiction from
the hypothesis that ϕ(n ) holds in R.

Assume ϕ(n ). Then for some x we have

A0(n, x) ∧ ∀y < x¬B0(n, y).

If x 6 m, then we have ¬A0(n, x) by (4), which contradicts A0(n, x). If m < x, then
we have ¬B0(n,m ), which contradicts B0(n,m ) by (4). It follows from Lemma 4
that ∀x (x 6 m∨m < x) is derivable in R, which implies the desired contradiction.

This proves the lemma.

The following statement follows immediately from this lemma together with
Theorem 3.

Corollary 3. (i) The system R is inseparable.
(ii) Every consistent arithmetical theory containing R is undecidable.

This also implies the Gödel–Rosser theorem.

Theorem 8. Let T be an arithmetical theory such that
(i) T contains R,
(ii) T is c.e.,
(iii) T is consistent.

Then T is inseparable, and thus undecidable and incomplete.

3.7. Effectiveness of Gödel’s and Rosser’s theorems. At first glance, the
above proofs of Gödel’s and Rosser’s theorems do not yield explicit examples of
independent arithmetical statements, because they are based on arguments by con-
tradiction. However, these proofs can easily be modified so as to produce such
examples.

We recall that a standard c.e. undecidable set

K = {x ∈ N : ϕx(x) is defined}

is creative, that is, for any c.e. set

Wn = {x ∈ N : ϕn(x) is defined}

one can indicate, effectively with respect to n, a number x such that x /∈ K ∪Wn

whenever K ∩Wn = ∅. In fact, for x one can take the number n itself, because
n ∈ K ⇐⇒ n ∈Wn.

Let ψK(x) be a Σ1-formula numerating K in T (or expressing K in the standard
model of arithmetic). The proofs of Theorems 5 and 7 were based on the fact



Gödel incompleteness theorems 21

that, under the assumption that T is complete, the formula ¬ψK(x) numerates the
complement of the set K. However, without this (false) assumption we can only
assert that the formula ¬ψK(x) numerates some c.e. subset K ′ of the complement
of K. Some index of this set, that is, a number n for which K ′ = Wn, can be found
explicitly, because we know both the formula ¬ψK(x) and the program enumerating
the theorems of T . Using the creativity of K, we obtain a number m for which
m /∈ K ∪ K ′, which implies that neither ψK(m ) nor ¬ψK(m ) are provable in T .
Thus, applying the creativity of K enables us to obtain an effective version of
Gödel’s first theorem.

To analyze the Gödel–Rosser theorem, we use an effective version of the notion
of an inseparable pair of c.e. sets. As we know, pairs of disjoint c.e. sets are
identified with computable partial functions g : N → {0, 1}. A standard example
of an inseparable pair of c.e. sets is given by the computable function F in (3),
which cannot be extended to an everywhere defined computable function. In fact,
this function has the stronger property of effective inextendibility, namely, for any
computable function ϕn extending F one can, effectively with respect to n, indicate
an m such that ϕn(m) is undefined.10 (The corresponding pair of c.e. sets is said
to be effectively inseparable.)

The proof of the Gödel–Rosser theorem is based on Lemma 5, which is effective in
the following sense: for any given pair of disjoint c.e. sets (A,B) this lemma enables
us to explicitly indicate a formula ψ separating the pair (A,B) in the theory R. In
our case we consider a pair (A,B) defined by the Turing machine M computing the
effectively inextendible partial function F . Using the fact that the construction of
the Σ1-definitions of the sets A and B by the machine M is effective, we obtain the
corresponding formula ψM .

We now associate another computable partial function with the formula ψM :

f(n) =


1 if T ` ψM (n ),
0 if T ` ¬ψM (n ),
undefined otherwise.

By the definition of ψM we know that the function f extends F . We note that
we can effectively find the index n of the function f from the formula ψM and the
program enumerating the theorems of T . The effective inextendibility of F gives
a number m for which the value f(m ) is undefined, that is, neither ψM (m ) nor
¬ψM (m ) are provable in T .

4. On the limits of applicability of Gödel’s first theorem

Both the semantic and the syntactic forms of Gödel’s theorem contain several
conditions. It is convenient to study them by fixing some conditions and varying
others. The most important condition is the enumerability of the theory T , and
therefore we consider the role of other conditions under the assumption that T is
c.e.

We note that under this assumption the incompleteness of the theory T is derived
from the stronger condition of undecidability of T . Thus, the investigation of the

10For our function F we have in fact that m = n.
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question as to whether T is incomplete becomes the investigation of conditions
ensuring the undecidability of T .

The questions of decidability and undecidability for logical theories are central
in mathematical logic. In particular, great attention was paid to these problems
in the works of Mal’tsev and his school. In the present paper we cannot give
a complete survey of this topic, but only mention the monograph [29] and the
remarkable survey [30], which maintains its relevance to the present day. Here we
note only some directions of investigation which are closest to the problem under
consideration.

The semantic formulation of Gödel’s theorem for c.e. theories reduces to the
assertion that the set of true arithmetical Π1-sentences is not enumerable. Possible
variations of this theorem go in two directions.

First, by staying in the framework of the language of arithmetic, one can study
narrower classes of formulae than Π1 for which non-enumerability is preserved. The
reason for these investigations is to look for undecidable problems of the simplest
form and, correspondingly, for the simplest independent sentences. The most inter-
esting results in this direction are connected with the investigations of Hilbert’s
tenth problem and with the so-called Diophantine forms of Gödel’s theorem (for
some details, see below).

Second, decidability problems for theories in other languages have been stud-
ied very actively. Decidable fragments of the language of arithmetic have been
studied especially thoroughly. Beginning with the classical results of Presburger
and Skolem, who proved the decidability of the elementary theories of (N; = ,+)
and (N; = , · ), respectively, important contributions in this direction were made
by the works of J. Robinson, A. Büchi, M. Rabin, A. Woods, Yu. Matiyasevich,
A. Semenov, A. Muchnik, J. Richard, P. Cegielski, and others. A modern survey
of results concerning this topic is given in [31].

The syntactic formulation of Gödel’s theorem (in Rosser’s stronger form) is an
immediate consequence of another statement, namely, of the undecidability of any
consistent extension of the system R (Corollary 3). Theories with all their consistent
extensions undecidable are said to be essentially undecidable.

Tarski [21] noted that the property of incompletability of a c.e. theory T not
only follows from the condition of its essential undecidability but is in fact equiva-
lent to this property. Indeed, the effective version of the Lindenbaum lemma shows
that every decidable theory has some decidable completion. Thus, the investiga-
tion of conditions for incompletability of c.e. theories becomes an investigation of
conditions for their essential undecidability. We note that the stronger property of
inseparability was proved above for the theory R (Corollary 3).

Tarski found the following sufficient condition for undecidability of theories. This
condition uses finitely axiomatized essentially undecidable theories like Q.

Proposition 1. Let S be a finitely axiomatized and essentially undecidable theory.
Then every theory T of the same signature which is compatible with S is undecidable.

Proof. Suppose that T is decidable. Consider the consistent theory T ′ = T + S.
Since S is given by finitely many axioms, we have

T ′ ` ϕ ⇐⇒ T ` AS → ϕ,
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where AS is the conjunction of the universal closures of the axioms of S. Thus,
the derivability problem in T ′ reduces to that in T , and hence T ′ is also decidable,
which contradicts the essential undecidability of S. This proves the proposition.

We note that, in particular, this implies Church’s theorem on the undecidability
of the predicate calculus (in the signature of arithmetic). As was proved by Tarski,
this proposition admits a very useful strengthening in terms of interpretations.

Definition 9. We say that a theory S can be weakly interpreted in T if S can be
interpreted in some theory U compatible with T and in the language of T .

Proposition 2. Let S be a finitely axiomatized and essentially undecidable theory.
If S can be weakly interpreted in a theory T , then T (as well as every subtheory
of T in the same language) is undecidable.

Proof. Let I be an interpretation of S in a theory U compatible with T . We assume
that the parameters of I are defined by some formula ParI(~p ). We can also assume
that S is given by a unique sentence AS . Then

∀~p
(
ParI(~p )→ AI

S(~p )
)

is provable in U . Let a theory U0 be given by this sentence. Then U0 is compatible
with T . However, U0 is also essentially undecidable: indeed, if U0 ⊆ V and the
theory V is consistent, then the set{

ϕ : V ` ∀~p
(
ParI(~p )→ ϕI(~p )

)}
is deductively closed, consistent, and contains S. It remains to apply Proposition 1.
This proves Proposition 2.

Thus, to prove the undecidability of theories by the method of interpretations,
it becomes important to obtain examples of weak finitely axiomatized essentially
undecidable theories. Tarski, Mostowski, and Robinson used the theory Q for this
purpose. One can formally weaken the theory Q without losing essential unde-
cidability by replacing the functions + and · by three-place predicates A(x, y, z)
and M(x, y, z). The corresponding system Q− was recently formulated by Grze-
gorczyk (see [32]). The axioms of the system are the three axioms of Q involving
the successor function and also versions of the other axioms in a relational lan-
guage which do not assume that the functions of addition and multiplication are
everywhere defined:

1. A(x, y, u) ∧A(x, y, v) → u = v, M(x, y, u) ∧M(x, y, v) → u = v;
2. A(x, 0, x), ∃u

(
A(x, y, u) ∧ z = S(u)

)
→ A

(
x, S(y), z

)
;

3. M(x, 0, 0), ∃u
(
M(x, y, u) ∧A(u, x, z)

)
→ M

(
x, S(y), z

)
.

Švejdar [32] proved that the theory Q can be interpreted in Q−, and therefore Q−

is essentially undecidable. However, Q− (with the axiom defining 6 in terms of
addition) is deductively weaker than Q, and it is even Σ1-incomplete. In particular,
∀x 6 0 x = 0 is provable in Q but not in Q−.

Weak finitely axiomatized essentially undecidable theories are known for the
language of concatenation of words in the binary alphabet, for the weak set theory,
and so on (see [33]–[36]). For example, weakening the theory of Tarski and Smielew,
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and thus strengthening their result, Vaught showed that this is so for the version
of set theory in the signature ∈ with only the two axioms

∀x ∃y ¬(y ∈ x), ∀x, y ∃u ∀z
(
z ∈ u ↔ (z ∈ x ∨ z ∈ y)

)
.

Up until now, this theory has apparently been the simplest example (with respect
to the formulation) of an essentially undecidable finitely axiomatized theory.

Putnam and Ehrenfeucht ([37], [38]) constructed examples of c.e. essentially
undecidable theories S for which Proposition 2 fails to hold. On this background,
the result of Cobham (see [33]) asserting that Proposition 2 holds for theories such
as R and even R0, which are not finitely axiomatizable, is of interest. We discuss
this result.

First, we note that our formulation of the system R differs somewhat from the
traditional one (see [21]). In the traditional formulation the symbol 6 is introduced
as an abbreviation, and the axiom R4 is weakened to the implication from left to
right. However, it can readily be seen that R4 is derivable also in the traditional
formulation of R.

Second, the following proposition holds (see [39]).

Proposition 3. (i) R can be interpreted in R0.
(ii) R0 is essentially undecidable and inseparable.

Proof. Let us define an interpretation I of the theory R in R0 by modifying the
order relation in R0 and leaving unchanged the other symbols of the signature. We
write

x 6I y
def⇐⇒

[(
0 6 y ∧ ∀u (u 6 y ∧ u 6= y → S(u) 6 y)

)
→ x 6 y

]
.

It is easy to see that the scheme R4 is provable in R0 for the relation 6I , as is the
additional scheme x 6I n ∨ n 6I x. This establishes (i).

The interpretation I does not contain parameters. Hence, for any sentence ϕ we
have

R ` ϕ =⇒ R0 ` ϕI .

Since I preserves the numerals, this immediately implies that R0, as well as R,
separates pairs of c.e. sets, and thus is an inseparable theory. This completes the
proof of the proposition.

Corollary 4. The Gödel–Rosser theorem holds also for all consistent extensions
of R0.

The theory R0 can be further weakened. Using J. Robinson’s idea showing
that addition is expressible in the model (N; = , S, · ), Jones and Shepherdson [39]
established that R0 can be interpreted in the theory R1 obtained from R0 by getting
rid of both the addition operation and the scheme R1. As above, this implies both
the essential undecidability and the inseparability of R1.

On the other hand, Cobham proved his theorem for a weaker relational version
R−

0 of the theory R0.
The language of R−

0 contains the predicate symbols C0, Sc, A, M , and 6 of
arity 1, 2, 3, 3, and 2, respectively, and does not contain equality. The predi-
cate C0(x) distinguishes the constant 0, and Sc, A, and M define the graphs of the
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successor, addition, and multiplication functions. Instead of numerals, we use the
formulae Cn(x) inductively defined by Cn+1(x)

def⇐⇒ ∃y
(
Cn(y) ∧ Sc(y, x)

)
.

The theory R−
0 contains the following axioms: 11

(i) ∃x C0(x), ¬
(
Cm(x) ∧ Cn(x)

)
for m 6= n;

(ii) Cm(x) ∧ Cn(x) →
(
A(x, y, z)↔ Cm+n(z)

)
;

(iii) Cm(x) ∧ Cn(x) →
(
M(x, y, z)↔ Cmn(z)

)
;

(iv) Cn(y) →
(
x 6 y ↔ C0(x) ∨ C1(x) ∨ · · · ∨ Cn(x)

)
.

We note that R−
0 does not contain equality axioms, and therefore it is significantly

weaker than R0 and more convenient in applications based on the following theorem
of Cobham.

Theorem 9. If R−
0 can be weakly interpreted in T , then T (and any subtheory of

it) is undecidable.

The essential undecidability of R−
0 follows immediately from the given theorem.

However, it can also be established directly in a rather simple way.
Since the language of R−

0 does not contain numerals, the notion of decidability
of a k-place relation A in a theory T in the signature of R−

0 can be modified as
follows: there is a formula ϕA(x1, . . . , xk) such that for all n1, . . . , nk

A(n1, . . . , nk) =⇒ T ` Cn1(x1) ∧ · · · ∧ Cnk
(xk) → ϕA, (5)

¬A(n1, . . . , nk) =⇒ T ` Cn1(x1) ∧ · · · ∧ Cnk
(xk) → ¬ϕA. (6)

Using this modification, one can easily prove decidability in R−
0 of any ∆0-predicates

and also separability of pairs of c.e. sets.

Corollary 5. The theory R−
0 is inseparable and essentially undecidable.

Cobham’s theorem immediately yields one of the strongest forms of the Gödel–
Rosser theorem.

Theorem 10. If R−
0 can be weakly interpreted in a c.e. theory T , then T is unde-

cidable and incomplete.

Vaught [33] suggested a rather simple derivation of Cobham’s theorem from
Trachtenbrot’s theorem on the inseparability of the set of identically true formulae
of the predicate logic and of the set of formulae refutable on finite models. (As
the signature, it is sufficient here to take a single binary predicate symbol.) Thus,
Trachtenbrot’s theorem gives another proof of the Gödel–Rosser theorem.

Visser [40] gave an interesting characterization of theories mutually interpretable
with R (or R0) in terms of satisfiability on finite models.

A theory T is said to be finitely satisfiable if T has a finite model. A theory T is
said to be locally finitely satisfiable if any finite subtheory of T is finitely satisfiable.
Obviously, the theory R is locally finitely satisfiable but not finitely satisfiable.
Visser showed that R has the following maximality property.

11There is a misprint in the definition of R−0 in [33] and [30], namely, the symbol → in
the axioms (ii) and (iii) must be replaced by ↔. Such a theory cannot be essentially unde-
cidable, because it can be interpreted in the decidable theory Th(N; 6) upon translation of A
and M by identically false formulae.
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Theorem 11. Every c.e. locally finitely satisfiable theory T is interpretable in R
(and the interpretation is one-dimensional and parameter-free).

This theorem shows that, although there is ambiguity in the choice of the sig-
nature, the axioms, and some other details in the formulation of R, the theory R,
modulo interpretability, nevertheless occupies a privileged position and is distin-
guished by a certain natural general property.

We also note that, along with arithmetical theories of type R, essentially unde-
cidable locally finitely satisfiable theories in other languages have also been consid-
ered. One of the most beautiful examples is the theory S introduced by Vaught [41],
defined in the signature of set theory by the single scheme of axioms

∀x1, . . . , xn ∃y ∀z
(
z ∈ y ↔

n∨
i=1

z = xi

)
for all n > 1.

Vaught showed that the theory S interprets R−
0 , and thus is inseparable and essen-

tially undecidable.

5. On the proofs of Gödel’s first theorem

Many proofs of Gödel’s first theorem in the literature follow the general scheme
presented above. However, they can differ significantly from one another in techni-
cal details. Reproducing all the details leaves (at least) the choice of the following
parameters (which we shall discuss for the simpler semantic version of Gödel’s the-
orem) to the taste of the authors:

1. the choice of a specific basic formal system T ;
2. the choice of a universal computation model on some family U of objects of T ,

where by such a model I mean any mathematically rigorous definition of the notion
of a c.e. set of elements of U (or of a computable function from U to U);

3. the choice of a Gödel numbering, that is, an encoding of the syntax of the
theory T by objects in U ;

4. a proof of the enumerability of the system T (in the sense of the chosen
computation model and the Gödel numbering);

5. a presentation of an example of an expressible non-c.e. set (together with the
proof of its expressibility and non-enumerability).

We note immediately that many authors of simplified proofs of Gödel’s theorem
neglect some of these points due to their intuitive clearness, using, as a rule, an
informal concept of algorithm and some of the forms of the Church–Turing thesis.
For example, the enumerability of the arithmetic PA is intuitively clear. At the same
time, an ‘honest’ proof of this statement needs programming in the framework of the
chosen computation model, that is, significant technical work in general. Choosing
the apparatus of primitive recursive functions, Gödel managed quite effectively
with the problem. Of course, the comparison may be valid only for more or less
complete proofs, although from the pedagogical point of view it is quite justified
and, moreover, quite desirable to neglect intuitively clear statements. In our opinion
there are still no complete proofs of Gödel’s theorem that are essentially simpler
than his own proof.

Let us consider some of the above points step by step.
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Choice of a theory. As a rule (but not always), authors choose some arithmetical
theory for the system T . Diverse versions are possible for pedagogical or ideological
reasons, depending on the choice of the signature. For example, it is convenient to
develop the encoding in a language having a symbol for the function of raising to
a power.

The primitive recursive arithmetic PRA whose language includes terms for all
primitive recursive functions is often taken as T . In this system one can work
directly with primitive recursive functions and avoid the inconvenience of embed-
ding them in the language of PA [3]. The language of PRA is infinite, although it is
primitive recursive. Moreover, PRA is too strong a theory, far beyond the theories
of bounded arithmetic, and this complicates the generalization of Gödel’s theorem
to this important class of formal systems.

Theories of binary labelled trees [42], theories of words in a binary alphabet ([43],
[44]), theories of hereditarily finite sets [45], and some other theories have also
been considered as an alternative to arithmetical theories. The description of the
syntax of formal theories or computation models in these systems is more natural,
because it enables one to avoid a Gödel numbering in a sense, namely, the formulae
themselves are identified with objects of the theory (words, labelled trees, or finite
sets).

Variations in the choice of the proof systems of T are also possible, namely, one
can consider natural deduction, Gentzen’s sequent calculus, and many other formats
of proofs. As was already noted above, these variations are not very fundamental
for Gödel’s first theorem, and, as a rule, the most customary and simply formulated
Hilbert format is used.

Choice of a computation model. To prove Gödel’s theorem, various authors have
considered the following computation models:

1) c.e. sets as projections of primitive recursive relations (Gödel);
2) the Herbrand–Gödel computable functions and partial recursive functions

(Kleene);
3) elementary formal systems (Smullyan);
4) Turing machines;
5) Σ-definable relations (Ershov) and others.

The choice of each of these models has its own merits and drawbacks.
In my opinion, Turing machines have the advantage that they are the most

standard and natural computation model. Among all known theoretical models,
the Church–Turing thesis is the most convincing for Turing machines. For this
reason, these machines are ideal for ‘abbreviated’ proofs of Gödel’s theorem.

Since it is somewhat more complicated to program Turing machines than to use
the higher-level language of partial recursive functions, an explicit construction of a
universal c.e. set, as well as a proof of enumerability of arithmetics, is not as simple
as using the language of partial recursive functions.

The choice of Σ-definability as an independent computation model (Ershov [45])
is of interest. Here, in essence, Theorem 4 becomes the definition of a c.e. set and
requires no proof. As a requital for this choice, it becomes necessary to construct
a universal c.e. set in the framework of the model. It is easy to see that such a set
is given by the formula which is customarily referred to in logic as the Σ-definition
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of truth for Σ-formulae (see [26] and [45]). In its technical difficulty the problem of
constructing this formula is similar to the problem of an arithmetical definition for
the provability predicate. Nevertheless, conceptually, the advantage of the choice
of Σ-definability as the computation model is that all proofs are carried out in the
framework of the same language, for set theory or formal arithmetic, and no use of
any external mechanisms of computability is required.

Among the known ‘honest’ proofs of Gödel’s theorem, Smullyan’s proof ([16], [9])
is one of the exemplary ones. It is thorough with respect to both the design and
the details. In particular, his choice of elementary formal systems as a model of
computability is beautifully adapted to the requirements of formalization of logical
languages.

Choice of a non-c.e. set. The choice of a specific non-c.e. set used to construct an
independent statement influences the external aspect of the proof most radically
(without changing the essence, of course). Sometimes this set is associated with a
formal analogue of some semantic paradox. Gödel’s own proof (see below) is based
on the construction of a formula asserting its own unprovability, which is analogous
to the liar’s paradox. (We note that if a theory T is semantically complete, then the
statement asserting that a formula ϕ is unprovable in T is equivalent to the falseness
of ϕ.) However, Gödel noted that one can adapt almost any of the known semantic
paradoxes to prove his theorems. Many later authors successfully confirmed this
idea of the classical author.

Kleene [12] was apparently the first to give the abstract computational core of
Gödel’s theorem in the spirit of the approach discussed here, using the notion of
Herbrand–Gödel general recursive function. For his first recursion-theoretic proof
of Gödel’s theorem, Kleene used the non-enumerability of the set of all indices of
general recursive functions (that is, everywhere defined computable functions). He
later noted [13] that this proof is very close to Richard’s paradox (and to Cantor’s
diagonal construction).

Other known proofs are connected with Berry’s paradox: does there exist a
least natural number that cannot be defined by fewer than seventeen words of the
English language? Two proofs using a similar idea were suggested by Chaitin [46]
and Boolos [47]. Boolos uses the ordinary notion of definability in arithmetic as
an explication of the notion ‘to define’. We dwell on Chaitin’s proof in some detail
because it became widely known, also in the popular scientific literature.

His proof uses the notion of the Kolmogorov complexity K(x) of a number x,
that is, for the ‘definitions’ of x one considers all possible programs p such that on
the empty input the program p produces x. In familiar terms, we can define one
of the versions of the function K for the standard (optimal) numeration of Turing
machines as follows:

K(x) = min{n ∈ N : ϕn(0) = x}.

Since the relation K(x) > y is non-c.e. and expressible in arithmetic, we can con-
clude that there are unprovable true statements of the form K(n ) > c for some
constants n and c. Chaitin asserts a bit more, namely, he presents an entire series
of unprovable statements of this form.
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Theorem 12. Let T be a c.e. and sound arithmetical theory. Then

∃c ∀m T 0 K(m ) > c.

The computational basis of this theorem lies in the following well-known property
of Kolmogorov complexity: for a given c there is no effective way to find a numberm
for whichK(m) > c. (At the same time, it is obvious that for any c such a numberm
exists, because the number of programs whose indices do not exceed c is finite.)

Lemma 7. There is no everywhere defined computable function f which satisfies
∀c K(f(c)) > c.

Chaitin’s theorem follows from this lemma. Indeed, if

∀c ∃m T ` K(m ) > c,

then since T is c.e., we obtain a computable everywhere defined function f for
which ∀c T ` K(f(c)) > c, and since T is sound, this implies that ∀c K(f(c)) > c,
which contradicts the lemma.

To prove the lemma, we use Kleene’s recursion theorem. Arguing by contra-
diction, we assume that there is an f satisfying the assumptions of the lemma.
Consider a computable function g which for an input c first computes y = f(c) and
then produces some index n such that ϕn(0) = y. Using the recursion theorem, we
choose an index e such that the function ϕe coincides with ϕg(e). By the construc-
tion of g we have K(f(e)) 6 g(e). However, since the output of the program e is
just like that of g(e), we also have K(f(e)) 6 e, which contradicts the condition of
the lemma.

The short proof of Chaitin’s theorem using the recursion theorem is a modified
version of the proof in [48] (see also [49]). Chaitin himself gave a more lengthy
but direct argument (see [46], [50], and also [51]). We note that the constant c
depends on the chosen numeration of computable functions, and for some choice of
this numeration one can achieve the condition c = 0 for all theories T [48].

As we see, Chaitin’s theorem is an immediate manifestation of the non-
computability of some simple properties connected with the Kolmogorov
complexity function K(x). Such facts about K(x) were certainly well known, as
was the general principle which enables one to convert them into incompleteness
results. From this point of view, Chaitin’s result is not more interesting than other
proofs of the incompleteness theorem that follow the above general scheme.

6. Gödel’s proof

From the point of view of computability theory, the analysis of Gödel’s original
proof and of its later versions (say, of Theorem 7; see, for example, [52] and [15])
is perhaps of most interest. This proof is based on the technical notion of repre-
sentability of a function in a theory T and in the construction of an arithmetical
formula asserting its own unprovability. The plan of Gödel’s proof can be described
as follows:

1) the proof of the fact that the proof predicate PrfT (x, y) for the theory T is
primitive recursive;
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2) the proof of the fact that every primitive recursive function is representable
in T , which implies the decidability in T of the predicate PrfT (x, y);

3) the construction of a formula ψ such that

T ` ψ ↔ ¬PrT

(
pψq

)
,

where PrT (x) stands for the provability formula ∃yPrfT (x, y), and where we
use the representability in T of the substitution function.

The proof is completed with the following argument, which shows that if T is
ω-consistent, then the formula ψ is unprovable and irrefutable in T .

If T ` ψ, then N � PrfT

(
pψq, n

)
for some n, which yields T ` PrfT

(
pψq, n

)
,

because PrfT is decidable in T , and thus T ` PrT

(
pψq

)
. By the definition of ψ,

this implies that T ` ¬ψ, in other words, T is inconsistent.
If T ` ¬ψ, then T ` ∃yPrfT

(
pψq, y

)
by the definition of ψ. On the other

hand, since T is consistent, we have T 0 ψ. Thus, for any specific n we have
N � ¬PrfT

(
pψq, n

)
. Since the predicate PrfT is decidable in T , we see that T `

¬PrfT

(
pψq, n

)
for any n, that is, T is ω-inconsistent.

We note that the step 1) of the proof is one of the historically first experiences
in programming (in this case, in the language of primitive recursive functions). Let
us consider the steps 2) and 3) in greater detail.

A function f(~x ) is said to be representable in T if the following is satisfied for
some formula φf (~x, y): for any ~n if m = f(~n ), then

T ` ∀y
(
ϕf (~n, y) ↔ y = m

)
.

The function f is said to be Σ1-representable if ϕf can be chosen in the class of
Σ1-formulae. The following lemma holds.

Lemma 8. Every computable function f is Σ1-representable in R.

As a rule, this lemma is proved directly, by induction with respect to the con-
struction of a partial recursive scheme defining f . It can also easily be derived from
Corollary 2, using a modification of the Σ1-definition of the graph of the function f .
If a formula ∃z ϕ0(~x, y, z) represents the graph of f , where ϕ0 ∈ ∆0, then it suf-
fices to take ϕf to be a formula expressing the fact that y is the first element of a
minimal pair 〈y, z〉 for which ϕ0(~x, y, z) holds.

We note that the representability of the characteristic function of a set A in T
implies the decidability of A in T , and therefore Lemma 8 implies the decidability in
R of any algorithmically decidable set. Considering partial {0, 1}-valued functions,
we can similarly derive from Lemma 8 the representability in R of any c.e. set and
the separability of pairs of c.e. sets.

Fixed-point lemma. The central point of Gödel’s proof was the construction of a
sentence ψ asserting its own unprovability. The possibility of constructing arith-
metical sentences referring to themselves does not depend on the specific features of
the provability formula and in fact holds for any property expressible by a formula
of the language under consideration. In modern presentations the corresponding
statement is distinguished as a separate fixed-point lemma.

Let T be an arithmetical theory and let ϕ(x) be a formula of the language of T
with a numerical variable x, where ϕ(x) may possibly contain other free variables.
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For any formula ψ of the language of T denote by ϕ[ψ] the formula ϕ(m ), where
m = pψq stands for the Gödel number of ψ. As always, we assume that the Gödel
numbering of the formulae is computable.

Lemma 9. Let T be an arithmetical theory containing R. Then for any formula
ϕ(x) of the language of T there is a formula ψ with the same free variables besides x
as those of ϕ such that

T ` ψ ↔ ϕ[ψ].

Proof. Consider the function assigning to any formula θ(x) the formula θ[θ]. This
function is computable, because the Gödel numbering of the formulae is computable.
Hence, the function

pθq 7→ pθ[θ]q

is also computable. Let Diag(x, y) denote a Σ1-formula representing this function
in R. Consider the formula

ϕ′(x) = ∃y
(
ϕ(y) ∧Diag(x, y)

)
.

Let ψ = ϕ′[ϕ′]. By the definition of Diag we have

Q ` ∀y
(
Diag(pϕ′q, y) ↔ y = pψq

)
.

By the rules of the predicate logic with equality, this implies that the formula ϕ′[ϕ′]
is equivalent to ∃y

(
ϕ(y) ∧ y = pψq

)
, that is, ϕ[ψ], as was to be proved. This

completes the proof of the lemma.

Analysis of Gödel’s proof. Let us consider Gödel’s proof from the computational
point of view. The provability in a Σ1-sound c.e. theory T containing R provides us
with another universal model of computability (Corollary 2). Therefore, one may
define c.e. sets as the sets that are numerable in T . According to this point of view
we may treat a formula ϕA(x) numerating A in T as a program accepting the set A,
namely,

n ∈ A ⇐⇒ T ` ϕA(n ).

The Gödel number of any formula ϕA of this kind is regarded as an index of the
set A. In this case the computation of the program ϕA on the input n is the search
for a derivation of the formula ϕA(n ) in T .

For this computation model one can reformulate all general results known in
computability theory for any standard model, for example, for Turing machines.
We recall that a creative set K was defined as {m ∈ N | m ∈Wm}. Here the set

{n ∈ N | T ` ϕA(n )}

is used as Wm, where pϕAq = m. This is equivalent to{
n ∈ N | N � ∃z

(
PrT (z) ∧ Sub(m,n, z)

)}
,

where Sub(x, y, z) represents the function pϕq, n 7→ pϕ(n )q. Correspondingly, the
analogue of the set K is numerated by the formula

∃z
(
PrT (z) ∧ Sub(x, x, z)

)
. (7)



32 L.D. Beklemishev

Repeating the effective version of the proof of Theorem 7, we consider a c.e. set
numerated by the negation of the formula (7) and compute its index m (the Gödel
number). By the definition of K, the sentence

¬∃z
(
PrT (z) ∧ Sub(m,m, z)

)
is independent. The attentive reader has certainly already noticed that the formula
Sub(x, x, y) is simply Diag(x, y), and we have just literally written out a solution
of the fixed-point equation

T ` ψ ↔ ¬PrT (pψq)

given in the proof of Lemma 9. Thus, Gödel’s proof of the incompleteness theorem
is equivalent in essence to an effective version of a recursion-theoretic proof. The
only difference is that Gödel chose a specific model of computability.

The above analysis also clarifies the role of the notion of representable function.
We could manage without this notion also for the proof of Theorem 7 by using
Gödel’s approach and by weakening the formulation of the fixed-point lemma. If T is
Σ1-sound, then for our purposes it is sufficient that the equivalence ψ ↔ ¬PrT (pψq)
is true in the standard model of arithmetic, and we can obtain this fact already
from the simple numerability of the relation Sub by some Σ1-formula. It is quite
another point that a stronger formulation enables us to assert the unprovability of
the formula ψ already under the assumption of simple consistency of T , and this is
essential, for example, when proving Gödel’s second theorem.

We note that the original proof of the Gödel–Rosser theorem [18] is also based on
an application of the fixed-point lemma. Rosser considered the following Rosser’s
proof predicate for T :

PrfR
T (x, y)

def⇐⇒ PrfT (x, y) ∧ ∀z < y ∀u < z
(
Neg(x, u) → ¬PrfT (u, z)

)
,

where Neg(x, u) represents the function of negating the formula x: pϕq 7→ p¬ϕq.
We note that if the theory T is consistent, then PrfR

T (x, y) defines in the standard
model the same predicate that is defined by Gödel’s formula PrfT (x, y). Rosser’s

provability formula is defined by PrR
T (x)

def⇐⇒ ∃yPrfR
T (x, y).

Following Rosser, one can easily prove that if

T ` θ ↔ ¬PrR
T [θ], (8)

then the formula θ is neither provable nor refutable in T already under the assump-
tion of simple consistency of T .

This proof can also be reduced to a recursive-theoretic proof for an appropriate
model of computability. In the present case we work with the notion of computable
{0, 1}-valued partial recursive function and regard a formula ϕ(x) as a program for
the computation of the function

f(n) =


0 if T ` ϕ(n ),
1 if T ` ¬ϕ(n ),
undefined otherwise.
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An analysis similar to that above shows that the independent statement obtained
from the effective version of Rosser’s theorem corresponds literally to the solution θ
of the fixed-point equation (8).

7. Incompleteness theorem and algorithmic problems

Using the above general scheme for proving Gödel’s theorem, one can convert
every known undecidable algorithmic problem in mathematics into an incomplete-
ness theorem. As a typical illustration, we consider several examples in arithmetic
and group theory.

Hilbert’s tenth problem: decide for a given Diophantine equation whether it
has at least one integer solution. This example is related to arithmetic and is
therefore especially close to the traditional version of Gödel’s theorem. It is of
interest because it gives the simplest form (in the logical sense) of an independent
statement (for the standard language of arithmetic).

By the Matiyasevich theorem, the set K is expressible by some Diophantine
formula of the form ∃~y p(x, ~y ) = q(x, ~y ), where p and q are polynomials with
natural number coefficients. The negation of this formula defines a non-c.e. set, and
hence for a given c.e. consistent arithmetical theory T we obtain a constant c for
which the statement ∀~xp(c, ~y ) 6= q(c, ~y ) is true but not provable in T . The authors
of [53], using earlier results of Jones, gave a quite transparent explicit formula
(easily convertible into a Diophantine formula) for which the above statement is
true. The constant c can also be given explicitly if a Turing machine enumerating T
is specified and an arithmetization of Turing machines is fixed.

Word problem in groups. Let a presentation of some group G by a finite system
of generators and defining relations be given. For a given word w in the group
alphabet

{a1, a
−1
1 , . . . , an, a

−1
n }

formed by the generators and their inverses it is required to determine whether
or not the equality w = 1 holds in G. A classical result of Novikov [54] is the
construction of a finitely presented group G for which this algorithmic problem is
undecidable.

Using the standard Gödel numbering of words in the alphabet of G, we can define
in the language of arithmetic the c.e. undecidable predicate w =G 1 expressing the
equality in G of a word w to the identity element. According to the general scheme,
for a given (c.e. and consistent) theory T we obtain a specific word wT 6=G 1 for
which this fact is not provable in T .

Unrecognizability of invariant properties of a group from a finite presentation of it.
By the well-known Adian–Rabin theorem (see [55] and [56]), almost all non-trivial
invariant properties of groups are unrecognizable from finite presentations of them.
For example, this is the case for the property that a group is isomorphic to the
trivial group.

Consider a natural Gödel numbering of all finite presentations of groups by gen-
erators and defining relations. Generalizing the previous example, we can express
in the language of arithmetic the c.e. two-place predicate w =G 1, where G is a
group with a finite presentation and w is a word in the alphabet of G. We note that
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the property that G defines the identity group is c.e., because it is equivalent to
the statement

∧n
i=1(ai =G 1), where a1, . . . , an are the generators of G. Thus, the

non-identity property of a group is non-c.e. and is expressible by an arithmetical
Π1-formula. The general scheme for proving Gödel’s theorem for any c.e. theory T
provides us with an example of a finitely presented non-identity group GT whose
non-identity is not provable in T if T is consistent.

Examples of finitely presented infinite groups whose infiniteness is not provable
in T , torsion-free groups for which this fact is not provable in T , and so on, can
be constructed in a similar way. The list of examples of this kind can be extended.
Like Chaitin’s theorem, these examples do not add much to our understanding of
provability in formal systems. On the other hand, the examples show the presence
of unprovable facts touching on very diverse areas of mathematics, including areas
that are very far from arithmetic.

A typical unprovable statement A is of the form “a given object C has the
property P ,” where the property P can be quite natural mathematically. However,
specific objects C for which A is unprovable are rather large as a rule, because prac-
tically all known examples of non-c.e. sets are based on encoding of programs (for
some universal computation model). Correspondingly, the examples of unprov-
able statements thus obtained depend on rather large constants. In turn, these
constants depend on a specific Gödel numbering of the programs, for example, of
Turing machines, and therefore are by no means ‘canonical’. This somewhat reduces
the value of these examples from the point of view of ordinary mathematics.

The question of whether these constants can still be used for some meaning-
ful classification of formal systems, for example, after fixing some specific ‘natural’
Gödel numbering, is of interest. Along with Chaitin, other authors also have specu-
lated on this topic (see, for example, [53]). The author of the present survey knows
no working examples of such classifications, but in principle this question can be
assumed to be open for now.12

8. Mathematically natural examples of unprovable statements

The situation is rather different with natural examples of unprovable statements
found in diverse areas of mathematics during the period after Gödel discovered his
theorems.

The most famous example of a statement of this kind was Cantor’s continuum
hypothesis. The fact that this hypothesis does not contradict the axioms of the
set theory ZFC was proved by Gödel, and the unprovability of this hypothesis
in ZFC was proved by Cohen (both results were obtained under the assumption
that ZFC is consistent). Independence from the axioms of ZFC was later estab-
lished for many other statements in set theory, general topology, and the theory of
functions. All these results were obtained on the basis of other, deeper approaches
connected with specific features of set theory. In particular, natural independent

12Examples in which one can make all constants vanish for some (artificial) choice of a Gödel
numbering in Chaitin’s theorem show that attempts at classifications of this kind cannot be quite
naive. However, this does not exclude the possibility that there are more complicated solutions
of the problem.
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statements in set theory strongly involve infinite sets, which fundamentally distin-
guishes these statements from Gödel’s independent formulae having a finitary 13

nature (and expressible in the language of arithmetic).
Natural mathematical statements of a finitary (as a rule, combinatorial) nature

that are independent of standard logical theories were discovered much later. Here
the theories were taken to be Peano arithmetic PA, the second-order predicative
arithmetic ATR0, or even the set theory ZFC together with some axioms of large
cardinals. Each example of a finitary independent statement is based on a deep
analysis of a specific formal system and does not generalize to arbitrary c.e. the-
ories. In this sense, we are concerned here with independence results of another,
non-Gödelian type.

It should be noted that these results imply the incompleteness of a number of
important specific theories, for example, of PA or even ZFC. However, it is impos-
sible to derive the fact of their fundamental incompletability, that is, Gödel’s first
theorem, at the same level of generality as given by Gödel himself. Nevertheless,
this loss of generality is more than compensated by the naturalness of the state-
ments whose independence is established. Below we describe only some of the
most well-known examples of this kind, but a detailed survey of the topic is far
beyond the framework of this paper (for a readable introduction see, for example,
the paper [57]).

Paris–Harrington principle. One of the first and most striking examples of a math-
ematically natural finitary independent statement was the so-calledParis–Harring-
ton principle generalizing the finite Ramsey theorem and found in [58].

We denote by [X]k the set of all k-element subsets of a finite set X and by |X|
the cardinality of X. For X we shall take an initial segment {0, 1, . . . , n − 1}
of the natural numbers, which we denote by n. We consider colourings of the
set [X]k with c colours, that is, functions f : [X]k → c. A subset Y ⊆ X is said to
be f-homogeneous if the restriction of the function f to the subset [Y ]k ⊆ [X]k is
constant.

The classical Ramsey theorem asserts that for any c, k, and m there is an n
such that for any colouring f : [n]k → c there exists a one-colour subset Y ⊆ n for
which |Y | > m. As is well known, this theorem can be formalized and proved in
the Peano arithmetic PA or even in the weaker primitive recursive arithmetic.

The Paris–Harrington principle differs from this theorem only by an additional
condition on the one-colour set Y ⊆ n in the conclusion of the theorem, namely,
together with the condition |Y | > m, the condition |Y | > min(Y ) must also hold.
Like the classical theorem, this principle can easily be derived from the infinite
Ramsey theorem by using compactness considerations. It is all the more surprising
that, as was shown by Paris and Harrington, their principle is not provable in Peano
arithmetic.

Besides the Paris–Harrington principle, several typical non-derivable combina-
torial statements are known for Peano arithmetic: ‘the Goodstein sequence’, ‘the
Hercules–Hydra game ’ [59], ‘the Kanamori–McAloon principle’ [60], ‘the Worm

13That is, formulated without using infinite objects. Here we use the word finitary in a some-
what weaker sense than it is customary in the framework of a discussion of Hilbert’s programme.
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principle’ ([61], [62]), and others. From the logical point of view, all these prin-
ciples are equivalent to the statement of 1-consistency of the arithmetic PA, and
therefore are provable in stronger theories like ATR0 and ZFC.

Finitary version of Kruskal’s theorem. The most well-known example of a fini-
tary combinatorial statement independent of the theory ATR0 is connected with
Kruskal’s theorem on trees. This statement was found by Harvey Friedman and
published in [63].

Let us consider finite trees (T,6 , inf) as partially ordered sets with the operation
inf assigning to elements x, y ∈ T their greatest lower bound inf(x, y). By a home-
omorphic embedding of a tree T1 in a tree T2 we mean an injective map f : T1 →
T2 preserving the operation inf (and thus the order relation): f

(
inf(x, y)

)
=

inf
(
f(x), f(y)

)
.

Kruskal’s theorem, in its simplest form, asserts that for any infinite sequence of
finite trees T0, T1, . . . there are indices i < j such that Ti can be homeomorphically
embedded in Tj . We note that this statement is not finitary, because it appeals to
arbitrary infinite sequences (of finite trees).

Consider the following finitary corollary to Kruskal’s theorem. For any m there
is an n such that if T0, T1, . . . , Tn is a sequence of finite trees in which every tree Tk

has at most m + k vertices, then Ti can be homeomorphically embedded in Tj

for some i < j 6 n. This statement follows easily from Kruskal’s theorem by
compactness considerations. On the other hand, as was proved by Friedman, the
statement implies the 1-consistency of ATR0, and therefore is not provable in ATR0

by Gödel’s second theorem. In fact, the finitary form of Kruskal’s theorem goes
rather far beyond the framework of ATR0. In [64] and [65] a precise characterization
of the infinite and finite Kruskal theorems is obtained in terms of proof-theoretic
ordinals and rapidly growing functions. (A sharp bound is given by the so-called
small Veblen ordinal and by the function of the extended Grzegorczyk hierarchy
with the corresponding index.)

Friedman also found stronger finitary combinatorial statements like Kruskal’s
theorem that are connected with a specific notion of embedding (so-called gap
embedding) for labelled finite trees [63]. Other interesting combinatorial principles
of similar strength are also known, for example, the so-called ‘Buchholz’s Hydra
game’ generalizing the game ‘Hercules–Hydra’ to labelled trees [66].

Finitary statements independent of ZFC. In subsequent years Friedman obtained
a series of new finitary statements that are independent of increasingly stronger
theories, including the ZFC theory together with some axioms of large cardinals.
(These statements are provable under the assumption that some other, stronger
axioms of large cardinals are satisfied.) Some of these results are published in [67],
but most of them are accessible only in the form of preliminary communications
(see [68]). It is striking that, in contrast to the traditional independence results
in set theory, these statements are completely finitary. However, they are prov-
able only under some very strong set-theoretic assumptions going beyond ZFC.
Moreover, in contrast to all the above examples of ‘mathematical incompleteness’,
Friedman gave examples of natural ZFC-independent statements of complexity Π1

in the arithmetical hierarchy. These examples also have only been announced so
far ([68], nos. 49–51).
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9. Appendix: Relative interpretations

We first give a definition of interpretation of a model M of signature Ω in another
model N of signature Σ. Then we define interpretations between theories. Our def-
inition of interpretation is rather general and admits parameters, an interpretation
of objects x ∈ M by tuples of objects ~x ∈ Nk, and an interpretation of equality
in M by a congruence relation.

We say that a translation I of the signature Ω into the signature Σ is given if:
1) a formula DI(~x, ~p ) of signature Σ is fixed (the tuples ~x and ~p exhaust all free

variables of the formula DI and can be of different lengths k and m, respectively);
2) to any symbol of Ω a formula of signature Σ with the corresponding arity is

assigned,

P 7→ PI(~x1, . . . , ~xn, ~p ),
f 7→ FI(~x1, . . . , ~xn, ~y, ~p ),
c 7→ CI(~x, ~p ),

where P and f are an n-place predicate symbol and a function symbol, respectively,
and c is a constant in Ω. (All tuples ~xi of variables are of length k and those of the
form ~p are of length m.) In particular, corresponding to the equality symbol in Ω
is a formula =I (~x, ~y, ~p ) of signature Σ.

Consider an arbitrary model (N ;~e ) of signature Σ with a distinguished tuple ~e
of constants. The translation I defines in Nk the set

MI = {~a ∈ Nk : N � DI [~a,~e ]},

together with the predicates PI , FI , and CI , and =I defined on Nk.

Definition 10. For a given ~e a translation I is an interpretation of M in N if the
following conditions hold:

1) =I (~x, ~y,~e ) satisfies in MI the equality axioms for the signature Ω, that is,
defines a congruence relation on MI ;

2) the predicates FI and CI define on the set MI , modulo =I , a function fI and
a constant cI , respectively;

3) the model (MI ;PI , fI , cI)/ =I is isomorphic to M .

A tuple ~e of constants for which these conditions are satisfied is said to be admis-
sible for the given interpretation I. The interpretation I has definable parameters
if for some formula ParI(~p ) of signature Σ we have

1) N � ∃~x ParI(~x ),
2) if N � ParI [~e ], then the tuple ~e is admissible for I.
A formula A is said to be simplified if every atomic subformula occurring in A

is of the form P (x1, . . . , xn), f(x1, . . . , xn) = y, or c = x, where x, x1, . . . , xn, y are
variables, P and f are a predicate symbol and a function symbol of the signature,
and c is a constant. As is well known, every formula is equivalent to some simplified
formula in first-order logic.

Let I be a translation of the signature Ω into Σ. To each variable x (of the
language of Ω) we assign its own k-tuple ~x of variables (of the language of Σ).
We define a translation AI(~x1, . . . , ~xn, ~p ) of a simplified formula A(x1, . . . , xn) of
signature Ω by induction on the construction of A:
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(i) P (x1, . . . , xn)I def⇐⇒ PI(~x1, . . . , ~xn, ~p ),

(c = x)I def⇐⇒ CI(~x, ~p ) and f(x1, . . . , xn) = y
def⇐⇒ FI(~x1, . . . , ~xn, ~y, ~p );

(ii) (¬A)I def⇐⇒ ¬AI , (A ∧B)I def⇐⇒ (AI ∧BI),

(iii)
(
∀xA(x)

)I def⇐⇒ ∀~x
(
DI(~x, ~p )→ AI(~x, ~p )

)
,

(iv)
(
∃xA(x)

)I def⇐⇒ ∃~x
(
DI(~x, ~p ) ∧AI(~x, ~p )

)
.

By the translation of an arbitrary formula A of signature Ω we mean the translation
of a simplified formula equivalent to the given one. This simplified formula is
uniquely defined up to logical equivalence.

Let I(a) be an element of the set MI ⊆ Nk and let I(a) correspond to a ∈ M
under the interpretation I of the model M in N . By induction on the construction
of A, we obtain the following proposition.

Proposition 4. For any formula A of signature Ω, any admissible ~e ∈ N , and any
a1, . . . , an ∈M ,

M � A[a1, . . . , an] ⇐⇒ N � AI [I(a1), . . . , I(an), ~e ].

We denote by Th(N) the set of all sentences that are true in the model M .

Corollary 6. If M is interpretable in N with definable parameters and if the ele-
mentary theory Th(N) is decidable, then so is Th(M).

Proof. For any sentence A in the language of M we have

M � A ⇐⇒ N � ∀~p
(
ParI(~p )→ AI(~p )

)
.

Thus, to verify the validity of A in M , it suffices to verify the validity of the formula
∀~p

(
ParI(~p )→ AI(~p )

)
in the model N .

Let a theory T of signature Ω and a theory U of signature Σ be given. We
assume that T is defined by a set of axioms which are closed formulae.

Definition 11. A translation I with definable parameters is called an interpreta-
tion of the theory T in U if

1) U ` ParI(~p )→ AI(~p ) for any axiom A ∈ T ;
2) U ` ParI(~p )→ ∃~x DI(~x, ~p );
3) U ` ParI(~p )→ EI(~p ), where E is the equality axiom for the signature Ω;
4) U ` ParI(~p )→

(
∀x1 . . . xn ∃!y f(x1, . . . , xn) = y

)I for the function symbols f
in Ω;

5) U ` ParI(~p )→ (∃!x c = x)I for the constants c in Ω.
The theory T is said to be interpretable in U if there is an interpretation of T

in U .

Thus, in any model N of the theory U and for a choice of parameters satisfying
the condition ParI , the translation I defines a model of the theory T .

By induction on the length of the derivation of a formula A we obtain the fol-
lowing proposition.
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Proposition 5. If I is an interpretation of T in U and if T ` A, then

U ` ∀~x
(
ParI(~p ) ∧DI(~x, ~p ) → AI(~x, ~p )

)
.

Corollary 7. If T is interpretable in U and U is consistent, then so is T .

This result is established by elementary (syntactic) methods not based on set
theory. As a rule, consistency proofs based on the existence of a model go beyond
the framework of elementary methods, because the models are usually infinite and
are constructed in the framework of set theory. The method of interpretations
enables one to avoid unnecessary hypotheses about the existence of infinite sets and
leads to a ‘finitary’ reduction of one theory to another. Using this approach, one
can prove, in particular, the consistency of the Lobachevskii elementary geometry
with respect to elementary Euclidean geometry, the consistency of the continuum
hypothesis (and the consistency of its negation) with respect to the set theory ZFC,
and other important results.
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[32] V. Švejdar, “An interpretation of Robinson arithmetic in its Grzegorczyk’s weaker
variant”, Fund. Inform. 81:1–3 (2007), 347–354.

[33] R. L. Vaught, “On a theorem of Cobham concerning undecidable theories”, Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), Stanford
Univ. Press, Stanford 1962, pp. 14–25.
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